NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 4

Fall 2022
Problem. An equilateral triangle is inscribed inside another equilateral triangle such that $\mathrm{AF}=\mathrm{CE}=\mathrm{DB}=2 \mathrm{FC}=2 \mathrm{~EB}=2 \mathrm{AD}$.

If the area of $\triangle \mathrm{DEF}$ equals $9 \mathrm{~cm}^{2}$, then find the area of $\triangle \mathrm{ABC}$.
Solution. There are many ways of solving this problem. We will use a method that uses the area formula for an equilateral triangle.
If an equilateral triangle has sides of length a

then the height of the triangle can be calculated using the pythagorus theorem

$$
\text { height }=\sqrt{a^{2}-\left(\frac{1}{2} a\right)^{2}}=\frac{\sqrt{3}}{2} a .
$$

Therefore, its area is

$$
\begin{equation*}
\text { Area of a triangle }=\frac{1}{2} \times \text { base } \times \text { height }=\frac{\sqrt{3}}{4} a^{2} . \tag{1}
\end{equation*}
$$

Since $\triangle \mathrm{DEF}$ is an equilateral triangle, the length of each of its side equals

$$
|\overline{\mathrm{EF}}|=\sqrt{\frac{4}{\sqrt{3}}(\text { area of } \Delta \mathrm{DEF})}=2\left(3^{\frac{3}{4}}\right)
$$

Let $\ell=|\overline{\mathrm{CF}}|$. Then by assumption $|\overline{\mathrm{CE}}|=2 \ell$. Since $\Delta \mathrm{CFE}$ is right angled at F , we apply the Pythagorus theorem to obtain

$$
\begin{array}{rlrl}
& & |\overline{\mathrm{EF}}|^{2}+|\overline{\mathrm{CF}}|^{2} & =|\overline{\mathrm{CE}}|^{2} \\
\Rightarrow & \left(2\left(3^{\frac{3}{4}}\right)\right)^{2}+\ell^{2} & =(2 \ell)^{2} \\
\Rightarrow & 3 \ell^{2} & =4\left(3^{\frac{3}{2}}\right) \\
\Rightarrow & \ell^{2} & =4(\sqrt{3}) .
\end{array}
$$

Note that the length of each side of $\Delta \mathrm{ABC}$ is 3ℓ. Therefore by using the formula (1), we conclude

$$
\text { Area of a triangle } \begin{aligned}
\Delta \mathrm{ABC} & =\frac{\sqrt{3}}{4}(3 \ell)^{2} \\
& =\frac{9 \sqrt{3}}{4} \ell^{2} \\
& =\frac{9 \sqrt{3}}{4} 4(\sqrt{3}) \\
& =27
\end{aligned}
$$

