Problem 3

In how many ways can we rearrange the five letters from their envelops so that none of them reaches the correct destination?

Solution. Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{n}$ denote the envelops of the letters $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, respectively. Let δ_{n} denote the number of ways one can rearrange these letters so that none of the letters are in their correct envelops. Let's use the term derangement for those arrangements where none if the letters are in the right envelop.
It is easy to see $\delta_{1}=0$ and $\delta_{2}=1$. The problem above is to identify the δ_{5} (the number of possible derangements when $n=5$).
Suppose we deranged the letters. If the envelop E_{1} contains the ℓ_{i} for some $\mathrm{i} \in\{2, \ldots, n\}$ (there are $n-1$ different choices for \mathbf{i}), then let's consider what is inside the envelop E_{i}. There are two disjoint cases:

If E_{i} contains a letter other than ℓ_{1} : In this case, the letters other than ℓ_{i} is distributed among envelops, so that E_{j} does not contain ℓ_{j} for $j \neq \mathrm{i}$, and E_{i} does not contain ℓ_{1}. This is equivalent to the derangement problem with $n-1$ letters. Hence, there are δ_{n-1} possibilities.

If E_{i} contains the letter ℓ_{1} : In this case the letters other than ℓ_{1} and ℓ_{i} is distributed among envelops other than E_{1} and E_{i} so that none of them are in their correct envelop. This is equivalent to a derangement problem with $n-2$ letters. Hence, there are δ_{n-2} possibilities.

From these observations, we get the inductive formula

$$
\delta_{n}=(n-1)\left(\delta_{n-1}+\delta_{n-2}\right)
$$

for $n \geq 2$. Thus, we get $\delta_{3}=2, \delta_{4}=9$, and therefore, $\delta_{5}=4(2+9)=44$.

