NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 5

Fall 2022
Problem. How many real numbers are there which satisfy the equation

$$
x^{2023}+x^{223}+x^{203}+x^{23}+x^{3}+x=2023 ?
$$

Solution. Let $\mathfrak{F}(x)=x^{2023}+x^{223}+x^{203}+x^{23}+x^{3}+x-2023$ so that finding a solution to the equation above is equivalent to solving for $\mathfrak{F}(x)=0$. Clearly

$$
\mathfrak{F}(-10)<0<\mathfrak{F}(10),
$$

therefore, by intermediate value theorem there is at least one value of x between -10 and 10 such that $\mathfrak{F}(x)=0$.
If $\mathfrak{F}(x)$ have more than one zeros then there is a value of x where the tangent line of $y=\mathfrak{F}(x)$ is horizontal.

In other words, there must be a value of x where $\mathfrak{F}^{\prime}(x)=0$ (Rolle's theorem). However, the derivative

$$
\mathfrak{F}^{\prime}(x)=2023 x^{2022}+223 x^{222}+203 x^{202}+23 x^{22}+3 x^{2}+1
$$

is a positive sum of even powers of x and a positive constant, therefore greater than zero for all values of x. So we conclude the the equation has exactly one solution.

