NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 7

Fall 2022

Problem 7

For a positive integer \mathbf{n} , let $S_{\mathbf{n}}$ be the subset of $\{1, 2, ..., \mathbf{n}\}$ which consists those numbers \mathbf{k} for which 1 is the only common divisor of \mathbf{n} and \mathbf{k} . Let $\alpha(\mathbf{n})$ denote the average of the numbers in $S_{\mathbf{n}}$. For example when $\mathbf{n} = 14$ then $S_{14} = \{1, 3, 5, 9, 11, 13\}$ and

$$\alpha(14) = \frac{1+3+5+9+11+13}{6} = 7.$$

Find a formula for $\alpha(\mathbf{n})$ in terms of \mathbf{n} and justify your answer.

Solution. The formula for α is

$$\boldsymbol{\alpha}(\mathbf{n}) = \frac{\mathbf{n}}{2}$$

and the key idea behind the proof is the following fact:

If the divisor of \mathbf{n} and \mathbf{k} is 1 then the common divisor of \mathbf{n} and $\mathbf{n} - \mathbf{k}$ is also 1.

This means if \mathbf{k} is in $S_{\mathbf{n}}$ then so is $\mathbf{n} - \mathbf{k}$. Further, when \mathbf{k} is in $S_{\mathbf{n}}$ then \mathbf{k} cannot equal $\mathbf{n} - \mathbf{k}$, otherwise 1 is not the only common divisor. Thus, the set $S_{\mathbf{n}}$ (for $\mathbf{n} > 2$) consists of r many pairs

$$S_{\mathbf{n}} = \{\mathsf{k}_1, \mathbf{n} - \mathbf{k}_1\} \cup \{\mathsf{k}_1, \mathbf{n} - \mathbf{k}_1\} \cup \dots \cup \{\mathsf{k}_r, \mathbf{n} - \mathbf{k}_r\}$$

for some positive integer r and

$$\begin{aligned} \boldsymbol{\alpha}(\mathbf{n}) &= \frac{(\mathbf{k}_1 + \mathbf{n} - \mathbf{k}_1) + \dots + (\mathbf{k}_r + \mathbf{n} - \mathbf{k}_r)}{2r} \\ &= \frac{\mathbf{n} + \dots + \mathbf{n}}{2r} \\ &= \frac{r\mathbf{n}}{2r} \\ &= \frac{\mathbf{n}}{2}. \end{aligned}$$