NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 7
Fall 2022

Problem 7

For a positive integer \mathbf{n}, let $S_{\mathbf{n}}$ be the subset of $\{1,2, \ldots, \mathbf{n}\}$ which consists those numbers \mathbf{k} for which 1 is the only common divisor of \mathbf{n} and \mathbf{k}. Let $\alpha(\mathbf{n})$ denote the average of the numbers in $\mathrm{S}_{\mathbf{n}}$. For example when $\mathbf{n}=14$ then $\mathrm{S}_{14}=\{1,3,5,9,11,13\}$ and

$$
\alpha(14)=\frac{1+3+5+9+11+13}{6}=7 .
$$

Find a formula for $\alpha(\mathbf{n})$ in terms of \mathbf{n} and justify your answer.

Solution. The formula for α is

$$
\alpha(\mathbf{n})=\frac{\mathbf{n}}{2}
$$

and the key idea behind the proof is the following fact:
If the divisor of \mathbf{n} and \mathbf{k} is 1 then the common divisor of \mathbf{n} and $\mathbf{n}-\mathbf{k}$ is also 1 .
This means if \mathbf{k} is in $S_{\mathbf{n}}$ then so is $\mathbf{n}-\mathbf{k}$. Further, when \mathbf{k} is in $\mathrm{S}_{\mathbf{n}}$ then \mathbf{k} cannot equal $\mathbf{n}-\mathbf{k}$, otherwise 1 is not the only common divisor. Thus, the set $S_{n}($ for $\mathbf{n}>2)$ consists of r many pairs

$$
\mathrm{S}_{\mathbf{n}}=\left\{\mathbf{k}_{1}, \mathbf{n}-\mathbf{k}_{1}\right\} \cup\left\{\mathbf{k}_{1}, \mathbf{n}-\mathbf{k}_{1}\right\} \cup \cdots \cup\left\{\mathbf{k}_{r}, \mathbf{n}-\mathbf{k}_{r}\right\}
$$

for some positive integer r and

$$
\begin{aligned}
\alpha(\mathbf{n}) & =\frac{\left(\mathbf{k}_{1}+\mathbf{n}-\mathbf{k}_{1}\right)+\cdots+\left(\mathbf{k}_{r}+\mathbf{n}-\mathbf{k}_{r}\right)}{2 r} \\
& =\frac{\overbrace{\mathbf{n}+\cdots+\mathbf{n}}^{r}}{2 r} \\
& =\frac{r \mathbf{n}}{2 r} \\
& =\frac{\mathbf{n}}{2} .
\end{aligned}
$$

