NMSU MATH PROBLEM OF THE WEEK

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Solution to Problem } 9 \\
\text { Spring } 2024
\end{array} \\
& \text { Problem } 9 \\
& \text { A set } S \subset \mathbb{Z}^{2} \text { is called balanced if for each point }(x, y) \in S \text {, ex- } \\
& \text { actly two of its } 4 \text { adjacent points }(x \pm 1, y) \text { and }(x, y \pm 1) \text { belong to } \\
& S . \text { For example, } S=\{(0,0),(0,1),(1,1),(1,0)\} \text { is balanced while } \\
& S=\{(0,0),(0,1),(0,2)\} \text { is not. Find all positive integers } n \text { such that } \\
& \text { there exists a balanced set of } n \text { elements. }
\end{aligned}
$$

Solution: We first prove that if a set S is balanced, then it must contain an even number of elements. To see this, we first call a point $(x, y) \in \mathbb{Z}^{2}$ odd when $x+y$ is odd, and we call it even when $x+y$ is even. Notice that for any odd point, (x, y), four of its neighbours are all odd and vice versa.

Let S be a balanced set with n_{1} odd points and n_{2} even points. Each odd point has exactly 2 even points as its neighbour, and each even point has exactly 2 odd points as its neighbour. Therefore, if we multiply the total number of odd points n_{1} by 2 , we get the total number of their even points neighbours but each is counted twice. This proves that $2 n_{1}=2 n_{2}$ and thus $n_{1}=n_{2}$ and $n=n_{1}+n_{2}=2 n_{1}$ is even.

Let us now find all even positive integers n such that there exists a balanced set of n points. One should be able to rule out $n=2$ easily since if a balanced set is non-empty, there is at least one point with two of its neighbours, which already has at least 3 points. $n=4$ is possible with the example given in the question.

To see $n=6$ is impossible: suppose S is balanced with 6 elements. Without loss of generality, let the lowest point on the left-most column of S be $(0,0)$ (if not, we can always shift the set S around). From the construction, all points $(x, y) \in S$ has $x \geq 0$ since $(0,0)$ is already on the left-most column; and $(0,-1)$ is also not in S because $(0,0)$ is the lowest along that column. Therefore, both $(1,0)$ and $(0,1)$ must be in S. The point $(1,1)$ cannot be in S, otherwise, the other two points must form a balanced set on their own, which is impossible. Therefore, $(0,2)$ must be in S since among the four neighbours of $(0,1),(-1,1)$ and $(1,1)$ are both not in S. Now both $(0,2)$ and $(1,0)$ are missing one neighbour. No matter which neighbour we pick for them, one can easily see that the result set is not balanced. This proves that $n \neq 6$.

Finally, we claim that any even number $n \geq 8$ is possible. For $k \geq 2$, consider the set

$$
S=\{(1,0),(1, k)\} \cup\{(0, n),(2, n): 0 \leq n \leq k\} .
$$

The set S forms the boundary of a $2 \times k$ rectangle. This set contains exactly $2(k+2)$ elements, and one can verify that it is balanced. Let $k=2,3,4, \ldots$, we have $n=2(k+2)=8,10,12, \ldots$. This proves that any even number $n \geq 8$ is possible.

In conclusion, $\{4\} \cup\{8,10,12, \ldots\}$ is the set of all n such that there exists a balanced set of n elements.

