NMSU MATH PROBLEM OF THE WEEK Solution to Problem 2 Fall 2021

Problem 2.

A number is said to be "good" if it has seven digits, it is a multiple of 388, and it has 388 as the last three digits. How many good numbers are there?

Solution.

Answer: There are 93 good numbers.

The number $\overline{a_1 a_2 a_3 a_4 388}$ is divisible by 388, if and only if, $\overline{a_1 a_2 a_3 a_4 000} = \overline{a_1 a_2 a_3 a_4} \times 1000$ is.

Now, we have that $388 = 97 \cdot 2^2$ is the prime factorization of 388 and gcd(1000, 388) = 4. Then, $\overline{a_1a_2a_3a_4} \times 1000$ is divisible by 388, if and only if, $\overline{a_1a_2a_3a_4}$ is divisible by 97.

The first and last number $\overline{a_1 a_2 a_3 a_4}$ with $a_1 \neq 0$ divisible by 97 are

 $1067 = 97 \times 11$ and $9991 = 97 \times 103$.

Thus, there are 103 - 11 + 1 = 93 good numbers.