NMSU MATH PROBLEM OF THE WEEK
 Solution to Problem 2

Fall 2021

Problem 2.

A number is said to be "good" if it has seven digits, it is a multiple of 388 , and it has 388 as the last three digits. How many good numbers are there?

Solution.

Answer: There are 93 good numbers.
The number $\overline{a_{1} a_{2} a_{3} a_{4} 388}$ is divisible by 388 , if and only if, $\overline{a_{1} a_{2} a_{3} a_{4} 000}=\overline{a_{1} a_{2} a_{3} a_{4}} \times 1000$ is.
Now, we have that $388=97 \cdot 2^{2}$ is the prime factorization of 388 and $\operatorname{gcd}(1000,388)=4$. Then, $\overline{a_{1} a_{2} a_{3} a_{4}} \times 1000$ is divisible by 388 , if and only if, $\overline{a_{1} a_{2} a_{3} a_{4}}$ is divisible by 97 .

The first and last number $\overline{a_{1} a_{2} a_{3} a_{4}}$ with $a_{1} \neq 0$ divisible by 97 are

$$
1067=97 \times 11 \quad \text { and } \quad 9991=97 \times 103
$$

Thus, there are $103-11+1=93$ good numbers.

