NMSU MATH PROBLEM OF THE WEEK Solution to Problem 3

Fall 2021

Problem 3.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function that satisfies the following conditions:
(i) $f(f(n))=n$ for every n.
(ii) $f(f(n+2)+2)=n$ for every n.
(iii) $f(0)=1$.

Show that $f(n)=1-n$ for every n.

Solution.

From (i) we obtain $f(1)=f(f(0))=0$. From (ii) it follows that $f(2)=f(f(1)+2)=-1$. Now, we show the following claim: for every a positive integer $n \geqslant 2$ we have $f(n)=1-n$ and $f(2-n)=n-1$. We note that this claim finishes the proof. We proceed by induction.

For $n=2$ we have $f(2)=-1$ and $f(0)=1$.
Let $n \geqslant 3$ and assume $f(n-1)=2-n$ and $f(3-n)=n-2$. From (ii) it follows that $f(n)=f(f((1-n)+2))+2)=1-n$; and from (i) it follows that $f(2-n)=f(f(n-1))=n-1$. The proof is now complete.

