NMSU MATH PROBLEM OF THE WEEK Solution to Problem 7

Fall 2021

Problem 7.

Let p be a polynomial with integer coefficients. If $p(0)$ and $p(1)$ are odd, show that p has no integer roots.

Solution.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ for integers $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$. Then $p(0)=a_{0}$ and $p(1)=a_{n}+a_{n-1}+\cdots+a_{1}+a_{0}$ are odd numbers. Thus, $a_{n}+a_{n-1}+\cdots+a_{1}$ is even.

Let r be any integer. It is easy to see that since $a_{n}+a_{n-1}+\cdots+a_{1}$ is even, then $a_{n} r^{n}+$ $a_{n-1} r^{n-1}+\cdots+a_{1} r$ is also even. Thus, $a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}$ odd. Hence, r is not a root of p. The result follows.

