NMSU MATH PROBLEM OF THE WEEK
 Solution to Problem 8

Fall 2021

Problem 8.

Let $a_{1}, a_{2}, a_{3}, \cdots$ be a sequence on nonnegative real numbers such that for every $n \geqslant 1$ we have

$$
a_{n+2} \leqslant \frac{a_{n+1}+a_{n}}{n+2}
$$

Show that the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Solution.

We show by induction that for $n \geqslant 3$ we have $a_{n+2} \leqslant \frac{a_{2}+a_{1}}{2^{n-1}}$ which will finish the proof. Indeed, for $n=2$, we have

$$
a_{4} \leqslant \frac{a_{3}+a_{2}}{4} \leqslant \frac{\frac{a_{2}+a_{1}}{3}+a_{2}}{4} \leqslant \frac{\frac{4}{3}\left(a_{2}+a_{1}\right)}{4}=\frac{a_{2}+a_{1}}{3},
$$

and so for $n=3$

$$
a_{5} \leqslant \frac{a_{4}+a_{3}}{5} \leqslant \frac{2\left(a_{2}+a_{1}\right)}{15} \leqslant \frac{a_{2}+a_{1}}{4} .
$$

For $n \geqslant 4$ we have

$$
a_{n+2} \leqslant \frac{a_{n+1}+a_{n}}{n+2} \leqslant\left(\frac{1}{2^{n-2}}+\frac{1}{2^{n-3}}\right) \frac{a_{2}+a_{1}}{n+2}=\frac{3\left(a_{2}+a_{1}\right)}{2^{n-2}(n+2)} \leqslant \frac{a_{2}+a_{1}}{2^{n-1}},
$$

finishing the proof.

