NMSU MATH PROBLEM OF THE WEEK Solution to Problem 9

Fall 2021

Problem 9.

Let f be a positive and continuous function that satisfies $f(x+1)=f(x)$ for every real number x. Prove the following inequality

$$
\int_{0}^{1} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x \geqslant 1
$$

Solution.

$$
\begin{aligned}
\int_{0}^{1} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x & =\int_{0}^{\frac{1}{2}} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x+\int_{\frac{1}{2}}^{1} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x \\
& =\int_{0}^{\frac{1}{2}} \frac{f(x)}{f\left(x+\frac{1}{2}\right)} d x+\int_{0}^{\frac{1}{2}} \frac{f\left(x+\frac{1}{2}\right)}{f(x+1)} d x \\
& =\int_{0}^{\frac{1}{2}} \frac{f(x)}{f\left(x+\frac{1}{2}\right)}+\frac{f\left(x+\frac{1}{2}\right)}{f(x)} d x \\
& \geqslant \int_{0}^{\frac{1}{2}} \frac{1}{2} d x=1
\end{aligned}
$$

where the last inequality follows by the $A M-G M$ inequality.

