NMSU MATH PROBLEM OF THE WEEK
 Solution to Problem 2
 Spring 2021

Problem 2.

Let n be a natural number such that $n+1$ is divisible by 24 . Prove that the sum of all divisors of n is also divisible by 24 .

Solution.

$n+1$ is divisible by 24 if and only if it is divisible by 3 and 8 . Which is equivalent to

$$
n \equiv-1 \quad(\bmod 3) \quad \text { and } \quad n \equiv-1 \quad(\bmod 8) .
$$

The divisors of n can be grouped in pairs a and $\frac{n}{a}$, and since no perfect square is congruent to -1 modulo 3 , we must have $a \neq \frac{n}{a}$.

From

$$
a\left(\frac{n}{a}\right) \equiv-1 \quad(\bmod 3)
$$

we conclude a and $\frac{n}{a}$ are equal to 1 and 2 , in some order, modulo 3 . Thus, $a+\frac{n}{a}$ is divisible by 3 and then so is the sum of all divisors of n.

From

$$
a\left(\frac{n}{a}\right) \equiv-1 \quad(\bmod 8)
$$

we conclude a and $\frac{n}{a}$ are equal to 1 and 7 , or 3 and 5 , in some order, modulo 8 . Thus, $a+\frac{n}{a}$ is divisible by 8 and then so is the sum of all divisors of n.

Since the sum of all divisors of n is divisible by 3 and 8 , it is divisible by 24 , concluding the proof.

