NMSU MATH PROBLEM OF THE WEEK Solution to Problem 4

Spring 2021

Problem 4.

Let p_1, \ldots, p_n be a set of $n \ge 2$ points. Suppose that for any pair of points p_i and p_j for $1 \le i < j \le n$ there is an arrow from p_i to p_j $(p_i \to p_j)$, or from p_j to p_i $(p_j \to p_i)$. Prove that there is a path

$$p_{i_1} \to p_{i_2} \to \cdots \to p_{i_n}$$

that includes all of the points.

Solution.

We proceed by induction. For n = 2 the statement is clear.

For the induction step, assume $n \ge 3$ and assume the statement is true for any number of points m < n. Let G be the set of points p_i such that there is an arrow from $p_n \to p_i$, and C the set of points p_i such that there is an arrow $p_i \to p_n$. By induction hypothesis there is a path in G, and another one in C, which contain all of the points in G and C, respectively. Let p_c be the ending point of the path in C and p_g the starting point of the path in G. Then we can build a path including all of the n points by adding

$$p_c \to p_n \to p_g,$$

which completes the proof.