NMSU MATH PROBLEM OF THE WEEK
 Solution to Problem 4
 Spring 2021

Problem 4.

Let p_{1}, \ldots, p_{n} be a set of $n \geqslant 2$ points. Suppose that for any pair of points p_{i} and p_{j} for $1 \leqslant i<j \leqslant n$ there is an arrow from p_{i} to $p_{j}\left(p_{i} \rightarrow p_{j}\right)$, or from p_{j} to $p_{i}\left(p_{j} \rightarrow p_{i}\right)$. Prove that there is a path

$$
p_{i_{1}} \rightarrow p_{i_{2}} \rightarrow \cdots \rightarrow p_{i_{n}}
$$

that includes all of the points.

Solution.

We proceed by induction. For $n=2$ the statement is clear.
For the induction step, assume $n \geqslant 3$ and assume the statement is true for any number of points $m<n$. Let G be the set of points p_{i} such that there is an arrow from $p_{n} \rightarrow p_{i}$, and C the set of points p_{i} such that there is an arrow $p_{i} \rightarrow p_{n}$. By induction hypothesis there is a path in G, and another one in C, which contain all of the points in G and C, respectively. Let p_{c} be the ending point of the path in C and p_{g} the starting point of the path in G. Then we can build a path including all of the n points by adding

$$
p_{c} \rightarrow p_{n} \rightarrow p_{g},
$$

which completes the proof.

