NMSU MATH PROBLEM OF THE WEEK Solution to Problem 5
 Spring 2021

Problem 5.

Let Δ be a right triangle in the plane whose sides have integer lengths. Show that Δ is similar to a right triangle whose hypotenuse is on the x-axis and whose vertices have integer coordinates.

Solution.

Let a, b, c be the lengths of the sides of Δ, where c corresponds to the hypotenuse. Let h be the length of the height H of the triangle dropped from the vertex opposite to the hypotenuse. Then, the area of Δ is:

$$
\operatorname{Area}(\Delta)=\frac{c \cdot h}{2}=\frac{a \cdot b}{2}
$$

Thus, we obtain $h=\frac{a \cdot b}{2}$.
We place the hypotenuse of Δ on the positive x-axis so that one of the vertices is at the origin and we obtain the following picture:

The result is a triangle with vertices $(0,0),(c, 0),\left(d, \frac{a \cdot b}{2}\right)$. To find the value of d, we note that the triangle to the left of H is similar to Δ. Then, by similarity we obtain:

$$
\frac{d}{a}=\frac{a}{c} \Rightarrow d=\frac{a^{2}}{c}
$$

Now, we dilate Δ with ratio of $2 c$ and obtain a triangle similar to Δ whose hypotenus is on the x-axis and whose vertices are $(0,0),\left(2 c^{2}, 0\right),\left(2 a^{2}, a \cdot b \cdot c\right)$, completing the proof.

