MATH 527 Masters Written/PhD Qualifying Exam Syllabus

Text: An Introduction to Analysis, Fourth Edition, by William R. Wade

- Basic properties of real numbers. Absolute value, properties starting at Definition 1.4 through the end of $\S 1.2$; Completeness Axiom, $\S 1.3$.
- Real sequences. Limits: definition, properties, basic theorems, Bolzano-Weierstrass Theorem, Cauchy sequences, limits superior/inferior, $\S \S 2.1-2.5$.
- Functions on \mathbb{R}. Two-sided limits: $\varepsilon-\delta$ definition, sequential characterization, limit rules, Squeeze Theorem, Comparision Theorem; one-sided limits: definitions, basic theorems, extension to limits at infinity, $\S \S 3.1-3.2$.

Continuity. Definition, basic properties, compositions, Extreme Value Theorem, Intermediate Value Theorem; uniform continuity, §§3.3-3.4.

- Differentiability. Definition, basic properties and rules, left and right derivatives, Chain Rule, Mean Value Theorem (extensions and applications), §§4.1-4.3.
Taylor's Theorem, l'Hospital's Rule and Inverse Function Theorems, §§4.4-4.5.
- Riemann Integration. Definition (upper/lower sums, upper/lower integrals), Riemann sums and connection with the definition, basic theorems/properties of the integral, Fundamental Theorem of Calculus, integration by parts, change of variables, §§5.15.3.

Improper Riemann integration. Definition, local integrability, basic properties/theorems, absolute integrability and conditional integrability, §5.4.

Examples of typical homework problems-this is not an exhaustive list:

1. Find the sup and \inf of $\left\{2+\frac{1}{3 n^{2}}: n \in \mathbb{N}\right\}$. Justify your answer.
2. Give an $\varepsilon-N$ proof that $\lim _{n \rightarrow \infty} \frac{2 n^{3}+n^{2}-n}{5 n^{3}-1}=\frac{2}{5}$.
3. Suppose $x_{n} \rightarrow 1$ as $n \rightarrow \infty$. Give an $\varepsilon-N$ proof that $\frac{x_{n}-2}{x_{n}} \rightarrow-1$ as $n \rightarrow \infty$.
4. State the relations between sup/inf of a set E and $-E$.
5. Give an $\varepsilon-\delta$ proof that

$$
\lim _{x \rightarrow 2} \frac{x^{2}+1}{x-3}=-5
$$

6. Find the limsup and liminf of the sequence

$$
x_{n}=3+\frac{n^{2}\left(1+(-1)^{n}\right)}{n+1} .
$$

Justify your answer.
7. Use the definition to prove that

$$
\lim _{x \rightarrow 3^{+}} \frac{x+2}{x^{2}-2 x-3}=\infty
$$

8. Use the definition to prove that

$$
\lim _{x \rightarrow 4^{+}} \frac{3}{x^{2}-3 x-4}=\infty
$$

9. Suppose $f:(0, \infty) \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove that if $g(x)=f(2 x)-f(x)$, then $g(x) \rightarrow 0$ as $x \rightarrow \infty$.
10. Suppose $a_{k}>0$ for all k,

$$
\sum_{k=1}^{\infty} a_{k} \text { converges, } \quad b_{n} \uparrow \infty \text { as } n \uparrow \infty \quad \text { and } \sum_{k=1}^{\infty} a_{k} b_{k} \text { converges. }
$$

Prove that

$$
\lim _{n \rightarrow \infty} b_{n} \sum_{k=n}^{\infty} a_{k}=0 .
$$

11. Suppose $f, g: E \rightarrow \mathbb{R}$ are uniformly continuous. Assume that f is bounded and $\inf g(E)>0$. Prove that f / g is uniformly continuous on E.
12. Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous and $\int_{-1}^{1} f(x) x^{2} d x=0$. Prove that $f(x)=0$ for at least one $x \in[-1,1]$.
13. Suppose $g_{n} \geq 0$ is Riemann integrable on $[0,1], n \in \mathbb{N}$ and f is Riemann integrable on $[0,1]$. Prove that if $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x \rightarrow 0$, then $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x \rightarrow 0$.
14. Suppose $f \geq 0$ is locally integrable on $[0,1), g \geq 0$ is improperly integrable on $[0,1)$, and

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)}{g(x)}=L \in(0, \infty)
$$

Prove that f is improperly integrable on $[0,1)$.
15. Suppose

$$
f(x)= \begin{cases}(x-1)^{2} \cos \frac{1}{x-1} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

Decide whether or not f is continuous at $x=1$ and prove your answer.
16. Prove there exists $x \in \mathbb{R}$ such that $x^{3}-1=\sin x$.
17. Use the definition $(\varepsilon-\delta)$ to prove $f(x)=4 x-3 x^{2}$ is uniformly continuous on the interval $(0,3)$.
18. Suppose $x_{1}=3$ and for $n \geq 1, x_{n+1}=8-\frac{12}{x_{n}}$. Prove x_{n} is convergent and identify the limit.
19. Prove $\tan x \geq x-\frac{x^{3}}{3}$ for $0 \leq x<\frac{\pi}{2}$.
20. Suppose

$$
f(x)= \begin{cases}x^{3} \cos \frac{1}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

a) Prove $f^{\prime}(0)$ exists.
b) Is $f^{\prime}(x)$ continuous at $x=0$? Justify your answer.
21. Let $f:[1,2] \rightarrow \mathbb{R}$ be continuously differentiable and one-to-one on $[1,2]$. Prove that

$$
\int_{1}^{2} f(x) d x+\int_{f(1)}^{f(2)} f^{-1}(x) d x=2 f(2)-f(1)
$$

22. Decide if the function $f(x)=\frac{2+\sin x}{x\left[1+(\ln x)^{1 / 2}\right]}$ is improperly integrable on $[e, \infty)$.
23. Write as a telescoping series to find the sum of $\sum_{k=2}^{\infty} \log \left(\frac{(k-1)(k+3)}{k(k+2)}\right)$.
24. Give an $\varepsilon-N$ proof that $\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}+5}{6 n^{3}+2 n^{2}+1}=\frac{1}{3}$.
25. Suppose

$$
f(x)=\left\{\begin{aligned}
3 x & \text { if } x \in \mathbb{Q} \\
-3 x & \text { if } x \notin \mathbb{Q}
\end{aligned}\right.
$$

a) Prove f is continuous at $x=0$.
b) Prove f is not continuous at $x \neq 0$.
26. Prove there exists some $x \in \mathbb{R}$ such that $x^{3}+2=e^{-x}$.
27. Decide if the function $f(x)=\frac{1}{x+x^{2}}$ is uniformly continuous on $(0,2)$. Justify your answer.
28. a) Suppose $f(x)=\frac{2}{x}-\ln x$ for $x \in(0,1]$. Prove f^{-1} exists.
b) Find the image $f((0,1])$ of f.
c) Prove f^{-1} is differentiable on its domain.
29. Use the Mean Value Theorem to prove $1-x+\frac{x^{2}}{2} \geq \ln x$ for $0<x \leq 1$.
30. Let $P_{n}=\left\{\frac{j}{n}: 1 \leq j \leq n\right\}$ and suppose $f(x)=\frac{1}{2}$ for $x \in(0,1)$ and $f(0)=1$, $f(1)=3$.
a) Compute the upper and lower sums of f over P_{n}.
b) Compute the limits as $n \rightarrow \infty$ of the upper and lower sums you computed in part a).
31. Let $f:[1,4] \rightarrow \mathbb{R}$ is continuous and for every $c \in(1,2)$,

$$
\int_{1}^{c^{2}} x^{2} f(x) d x=c^{8}
$$

Prove that $f(x)=4 x$ for $x \in[1,4]$.
32. Suppose $\int_{e}^{e^{2}}|f(x)| d x<e$. Prove $\left|\int_{1}^{2} e^{-2 x} f\left(e^{x}\right) d x\right|<e^{-2}$.
33. Prove $\inf (0,1)=0$.
34. Find the inf and sup of the interval $[-1,2)$; justify your answer.
35. Find the inf and sup of the set $\left\{\frac{1}{n}+n: n \in \mathbb{N}\right\}$; justify your answer.
36. Find the \inf and \sup of $\left\{\frac{1}{n}+(-1)^{n}: n \in \mathbb{N}\right\}$ and justify your answer.
37. Use the definition of the limit to prove the following.
(a) $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n^{2}+8}{4 n^{3}+9}=\frac{3}{4}$.
(b) $\lim _{n \rightarrow \infty} \frac{1}{5 n^{2}-1}=0$.
(c) $\lim _{n \rightarrow \infty} \frac{1}{6 n^{2}-8 n+1}=0$.
38. We say a sequence $a_{n} \rightarrow \infty$ if for each $M>0$, there exists $N \in \mathbb{N}$ such that

$$
n \geq N \Longrightarrow a_{n}>M
$$

(a) State the corresponding definition for $a_{n} \rightarrow-\infty$.
(b) Prove that if $x_{n} \rightarrow \infty$, then $\left(x_{n}\right)$ has a minimum; that is, for some $N \in \mathbb{N}$, $x_{n} \geq x_{N}$ for all $n \in \mathbb{N}$.
39. Suppose that the sequence $\left(a_{n}\right)$ is increasing and it has a convergent subsequence. Does this imply that $\left(a_{n}\right)$ is convergent? Prove or provide a counterexample.
40. Is there any sequence $\left(a_{n}\right)$ which has no convergent subsequence, but $\left(\left|a_{n}\right|\right)$ is convergent? Justify your answer.
41. Prove that if $\left(a_{n}\right)$ is bounded, and all of its convergent subsequences converge to a, then $\left(a_{n}\right)$ also converges to a.
42. Prove or provide a counterexample:
(a) If $\left(x_{n}\right)$ Cauchy and $\left(y_{n}\right)$ is bounded, then $\left(x_{n} y_{n}\right)$ is Cauchy.
(b) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\frac{x_{n}}{y_{n}}$ is Cauchy.
43. Give $\varepsilon-\delta$ proofs of the following limits.
(a) $\lim _{x \rightarrow 2}\left(3 x^{2}-5 x+1\right)=3$
(b) $\lim _{x \rightarrow 3} \frac{x-4}{x-2}=-1$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}+1}{x-3}=-5$
(d) $\lim _{x \rightarrow 1} \frac{2 x-5}{x-3}=\frac{3}{2}$
44. Prove the following limits do not exist.
(a) $\lim _{x \rightarrow-5} \frac{|x+5|}{x+5}$
(b) $\lim _{x \rightarrow 1} \sin \frac{1}{x-1}$
45. State the definition of the following.
(a) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
(b) $\lim _{x \rightarrow a} f(x)=-\infty$
46. Determine the limits (using methods you learned in Calculus I) and then use the definition to prove your answer.
(a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2}{1-2 x^{3}}$
(b) $\lim _{x \rightarrow-\infty} \frac{x-3}{x+4}$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}-3}$
(d) $\lim _{x \rightarrow 4^{+}} \frac{1}{x^{2}-9 x+20}$
(e) $\lim _{x \rightarrow \infty}\left(x-3 x^{2}\right)$
(f) $\lim _{x \rightarrow \infty} \frac{1}{x^{2}-x-6}$
47. Prove that the equation $e^{x}=2 \cos x+1$ has at least one solution in \mathbb{R}.
48. Prove that if f is continuous on $[a, b]$ with $f(x)>0$ for all $x \in[a, b]$, then $1 / f$ is bounded on $[a, b]$.
49. Give a short justification for your answer to each of the following questions. When applicable, a sketch will suffice.
(a) Is it possible for a continuous function f defined on $[0,1]$ to satisfy $f([0,1])=$ $(0,1) ?$
(b) Is it possible for a continuous function f defined on $(0,1)$ to satisfy $f((0,1))=$ $[0,1]$?
50. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that f has at least one fixed point in $[0,1]$; that is, there exists $x \in[0,1]$ such that $f(x)=x$.

HINT: Consider the function $g(x)=f(x)-x$ and apply the Intermediate Value Theorem.
51. Prove that the function $f(x)=1 / x$ is not uniformly continuous on $(0,1)$.
52. Suppose $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A. Prove that if $\left(x_{n}\right)$ is a Cauchy sequence in A, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
53. Show $f(x)=1 / x^{2}$ is uniformly continuous on $[1, \infty)$, but not on $(0,1)$.
54. Let $f(x)=x|x|$. Prove that

$$
\lim _{h \rightarrow 0} \frac{f(h)-2 f(0)+f(-h)}{h^{2}}=0
$$

but $f^{\prime \prime}(0)$ does not exist.
55. Suppose $f, g: A \rightarrow \mathbb{R}$, where A is any nonempty set. For example, A could be a set of real numbers, or A could even be sets of sets (for instance, the set of all partitions of an interval $[a, b]$). Prove that

$$
\sup _{A}(f+g) \leq \sup _{A} f+\sup _{A} g \quad \inf _{A}(f+g) \geq \inf _{A} f+\inf _{A} g \quad .
$$

