MATH 527 Masters Written/PhD Qualifying Exam Syllabus

Text: An Introduction to Analysis, Fourth Edition, by William R. Wade

- Basic properties of real numbers. Absolute value, properties starting at Definition 1.4 through the end of §1.2; Completeness Axiom, §1.3.
- Real sequences. Limits: definition, properties, basic theorems, Bolzano-Weierstrass Theorem, Cauchy sequences, limits superior/inferior, §§2.1–2.5.
- Functions on \mathbb{R} . Two-sided limits: $\varepsilon \delta$ definition, sequential characterization, limit rules, Squeeze Theorem, Comparision Theorem; one-sided limits: definitions, basic theorems, extension to limits at infinity, §§3.1–3.2.

Continuity. Definition, basic properties, compositions, Extreme Value Theorem, Intermediate Value Theorem; uniform continuity, §§3.3–3.4.

- Differentiability. Definition, basic properties and rules, left and right derivatives, Chain Rule, Mean Value Theorem (extensions and applications), §§4.1–4.3.
 Taylor's Theorem, l'Hospital's Rule and Inverse Function Theorems, §§4.4–4.5.
- Riemann Integration. Definition (upper/lower sums, upper/lower integrals), Riemann sums and connection with the definition, basic theorems/properties of the integral, Fundamental Theorem of Calculus, integration by parts, change of variables, §§5.1–5.3.

Improper Riemann integration. Definition, local integrability, basic properties/theorems, absolute integrability and conditional integrability, §5.4.

Examples of typical homework problems—this is *not* an exhaustive list:

- 1. Find the sup and inf of $\left\{2 + \frac{1}{3n^2} : n \in \mathbb{N}\right\}$. Justify your answer.
- 2. Give an εN proof that $\lim_{n \to \infty} \frac{2n^3 + n^2 n}{5n^3 1} = \frac{2}{5}$.
- 3. Suppose $x_n \to 1$ as $n \to \infty$. Give an εN proof that $\frac{x_n 2}{x_n} \to -1$ as $n \to \infty$.
- 4. State the relations between \sup/\inf of a set E and -E.
- 5. Give an $\varepsilon \delta$ proof that

$$\lim_{x \to 2} \frac{x^2 + 1}{x - 3} = -5.$$

6. Find the lim sup and lim inf of the sequence

$$x_n = 3 + \frac{n^2(1 + (-1)^n)}{n+1}$$

Justify your answer.

7. Use the definition to prove that

$$\lim_{x \to 3^+} \frac{x+2}{x^2 - 2x - 3} = \infty.$$

8. Use the definition to prove that

$$\lim_{x \to 4^+} \frac{3}{x^2 - 3x - 4} = \infty.$$

- 9. Suppose $f: (0,\infty) \to \mathbb{R}$ is differentiable and $f'(x) \to 0$ as $x \to \infty$. Prove that if g(x) = f(2x) f(x), then $g(x) \to 0$ as $x \to \infty$.
- 10. Suppose $a_k > 0$ for all k,

$$\sum_{k=1}^{\infty} a_k \text{ converges}, \quad b_n \uparrow \infty \text{ as } n \uparrow \infty \quad \text{and } \sum_{k=1}^{\infty} a_k b_k \text{ converges}.$$

Prove that

$$\lim_{n \to \infty} b_n \sum_{k=n}^{\infty} a_k = 0$$

- 11. Suppose $f, g : E \to \mathbb{R}$ are uniformly continuous. Assume that f is bounded and $\inf g(E) > 0$. Prove that f/g is uniformly continuous on E.
- 12. Suppose $f: [-1,1] \to \mathbb{R}$ is continuous and $\int_{-1}^{1} f(x)x^2 dx = 0$. Prove that f(x) = 0 for at least one $x \in [-1,1]$.
- 13. Suppose $g_n \ge 0$ is Riemann integrable on [0,1], $n \in \mathbb{N}$ and f is Riemann integrable on [0,1]. Prove that if $\lim_{n\to\infty} \int_0^1 g_n(x) \, dx \to 0$, then $\lim_{n\to\infty} \int_0^1 f(x)g_n(x) \, dx \to 0$.
- 14. Suppose $f \ge 0$ is locally integrable on [0,1), $g \ge 0$ is improperly integrable on [0,1), and

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = L \in (0, \infty).$$

Prove that f is improperly integrable on [0, 1).

15. Suppose

$$f(x) = \begin{cases} (x-1)^2 \cos \frac{1}{x-1} & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

Decide whether or not f is continuous at x = 1 and prove your answer.

- 16. Prove there exists $x \in \mathbb{R}$ such that $x^3 1 = \sin x$.
- 17. Use the definition $(\varepsilon \delta)$ to prove $f(x) = 4x 3x^2$ is uniformly continuous on the interval (0,3).

- 18. Suppose $x_1 = 3$ and for $n \ge 1$, $x_{n+1} = 8 \frac{12}{x_n}$. Prove x_n is convergent and identify the limit.
- 19. Prove $\tan x \ge x \frac{x^3}{3}$ for $0 \le x < \frac{\pi}{2}$.
- 20. Suppose

$$f(x) = \begin{cases} x^3 \cos \frac{1}{x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- a) Prove f'(0) exists.
- b) Is f'(x) continuous at x = 0? Justify your answer.
- 21. Let $f:[1,2] \to \mathbb{R}$ be continuously differentiable and one-to-one on [1,2]. Prove that

$$\int_{1}^{2} f(x) \, dx + \int_{f(1)}^{f(2)} f^{-1}(x) \, dx = 2f(2) - f(1).$$

22. Decide if the function $f(x) = \frac{2 + \sin x}{x[1 + (\ln x)^{1/2}]}$ is improperly integrable on $[e, \infty)$.

23. Write as a telescoping series to find the sum of $\sum_{k=2}^{\infty} \log\left(\frac{(k-1)(k+3)}{k(k+2)}\right).$

24. Give an $\varepsilon - N$ proof that $\lim_{n \to \infty} \frac{2n^3 + 3n^2 + 5}{6n^3 + 2n^2 + 1} = \frac{1}{3}$.

25. Suppose

$$f(x) = \begin{cases} 3x & \text{if } x \in \mathbb{Q} \\ -3x & \text{if } x \notin \mathbb{Q} \end{cases}$$

- a) Prove f is continuous at x = 0.
- b) Prove f is not continuous at $x \neq 0$.
- 26. Prove there exists some $x \in \mathbb{R}$ such that $x^3 + 2 = e^{-x}$.
- 27. Decide if the function $f(x) = \frac{1}{x + x^2}$ is uniformly continuous on (0, 2). Justify your answer.
- 28. a) Suppose $f(x) = \frac{2}{x} \ln x$ for $x \in (0, 1]$. Prove f^{-1} exists.
 - b) Find the image f((0,1]) of f.
 - c) Prove f^{-1} is differentiable on its domain.

29. Use the Mean Value Theorem to prove $1 - x + \frac{x^2}{2} \ge \ln x$ for $0 < x \le 1$.

- 30. Let $P_n = \{\frac{j}{n} : 1 \le j \le n\}$ and suppose $f(x) = \frac{1}{2}$ for $x \in (0,1)$ and f(0) = 1, f(1) = 3.
 - a) Compute the upper and lower sums of f over P_n .
 - b) Compute the limits as $n \to \infty$ of the upper and lower sums you computed in part a).
- 31. Let $f: [1,4] \to \mathbb{R}$ is continuous and for every $c \in (1,2)$,

$$\int_{1}^{c^2} x^2 f(x) \, dx = c^8$$

Prove that f(x) = 4x for $x \in [1, 4]$.

32. Suppose
$$\int_{e}^{e^2} |f(x)| dx < e$$
. Prove $\left| \int_{1}^{2} e^{-2x} f(e^x) dx \right| < e^{-2}$.

- 33. Prove $\inf(0,1) = 0$.
- 34. Find the inf and sup of the interval [-1, 2); justify your answer.
- 35. Find the inf and sup of the set $\left\{\frac{1}{n} + n : n \in \mathbb{N}\right\}$; justify your answer.
- 36. Find the inf and sup of $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$ and justify your answer.
- 37. Use the definition of the limit to prove the following.

(a)
$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 + 8}{4n^3 + 9} = \frac{3}{4}.$$

(b)
$$\lim_{n \to \infty} \frac{1}{5n^2 - 1} = 0.$$

(c)
$$\lim_{n \to \infty} \frac{1}{6n^2 - 8n + 1} = 0.$$

38. We say a sequence $a_n \to \infty$ if for each M > 0, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Longrightarrow a_n > M.$$

- (a) State the corresponding definition for $a_n \to -\infty$.
- (b) Prove that if $x_n \to \infty$, then (x_n) has a minimum; that is, for some $N \in \mathbb{N}$, $x_n \ge x_N$ for all $n \in \mathbb{N}$.
- 39. Suppose that the sequence (a_n) is increasing and it has a convergent subsequence. Does this imply that (a_n) is convergent? Prove or provide a counterexample.
- 40. Is there any sequence (a_n) which has no convergent subsequence, but $(|a_n|)$ is convergent? Justify your answer.
- 41. Prove that if (a_n) is bounded, and all of its convergent subsequences converge to a, then (a_n) also converges to a.

42. Prove or provide a counterexample:

(a) If (x_n) Cauchy and (y_n) is bounded, then (x_ny_n) is Cauchy.

(b) If (x_n) and (y_n) are Cauchy and $y_n \neq 0$ for all $n \in \mathbb{N}$, then $\frac{x_n}{y_n}$ is Cauchy.

43. Give $\varepsilon - \delta$ proofs of the following limits.

(a)
$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3$$

(b)
$$\lim_{x \to 3} \frac{x - 4}{x - 2} = -1$$

(c)
$$\lim_{x \to 2} \frac{x^2 + 1}{x - 3} = -5$$

(d)
$$\lim_{x \to 1} \frac{2x - 5}{x - 3} = \frac{3}{2}$$

44. Prove the following limits do not exist.

(a)
$$\lim_{x \to -5} \frac{|x+5|}{x+5}$$

(b)
$$\lim_{x \to 1} \sin \frac{1}{x-1}$$

45. State the definition of the following.

(a)
$$\lim_{x \to -\infty} f(x) = -\infty$$

(b) $\lim_{x \to a} f(x) = -\infty$

46. Determine the limits (using methods you learned in Calculus I) and then use the definition to prove your answer.

(a)
$$\lim_{x \to \infty} \frac{x^3 + 2}{1 - 2x^3}$$

(b) $\lim_{x \to -\infty} \frac{x - 3}{x + 4}$
(c) $\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 - 3}$
(d) $\lim_{x \to 4^+} \frac{1}{x^2 - 9x + 20}$
(e) $\lim_{x \to \infty} (x - 3x^2)$
(f) $\lim_{x \to \infty} \frac{1}{x^2 - x - 6}$

47. Prove that the equation $e^x = 2\cos x + 1$ has at least one solution in \mathbb{R} .

48. Prove that if f is continuous on [a, b] with f(x) > 0 for all $x \in [a, b]$, then 1/f is bounded on [a, b].

- 49. Give a short justification for your answer to each of the following questions. When applicable, a sketch will suffice.
 - (a) Is it possible for a continuous function f defined on [0,1] to satisfy f([0,1]) = (0,1)?
 - (b) Is it possible for a continuous function f defined on (0,1) to satisfy f((0,1)) = [0,1]?
- 50. Let $f : [0,1] \to [0,1]$ be continuous. Prove that f has at least one fixed point in [0,1]; that is, there exists $x \in [0,1]$ such that f(x) = x.

HINT: Consider the function g(x) = f(x) - x and apply the Intermediate Value Theorem.

- 51. Prove that the function f(x) = 1/x is not uniformly continuous on (0, 1).
- 52. Suppose $f : A \to \mathbb{R}$ is uniformly continuous on A. Prove that if (x_n) is a Cauchy sequence in A, then $(f(x_n))$ is a Cauchy sequence.
- 53. Show $f(x) = 1/x^2$ is uniformly continuous on $[1, \infty)$, but not on (0, 1).
- 54. Let f(x) = x|x|. Prove that

$$\lim_{h \to 0} \frac{f(h) - 2f(0) + f(-h)}{h^2} = 0$$

but f''(0) does not exist.

55. Suppose $f, g : A \to \mathbb{R}$, where A is any nonempty set. For example, A could be a set of real numbers, or A could even be sets of sets (for instance, the set of all partitions of an interval [a, b]). Prove that

$$\sup_{A} (f+g) \le \sup_{A} f + \sup_{A} g \qquad \inf_{A} (f+g) \ge \inf_{A} f + \inf_{A} g$$

•