## Basic Real Analysis Comprehensive Exam Syllabus

## Math 528

Basic references: Rudin's Principles of Mathematical Analysis and Wade's An Introduction to Analysis, Fourth Edition.

- Rudin: Chapter 2; Chapter 3: 3.1-3.19, 3.38; Chapter 4: 4.8, 4.13-4.23; Chapter 5: 5.15; Chapter 7; Chapter 9: 9.10-9.21, 9.24-9.28. There is a gentler approach to chapter 9 in Wade's book-see the next bullet point.
- Wade: Chapter 11: Section 11.1 through Example 11.3; Section 11.2; Section 11.4; Section 11.6

Examples of typical homework problems (not an exhaustive list)

## THIS IS NOT A LIST OF POTENTIAL EXAM QUESTIONS

1. Rudin page $44 / 11$
2. Let $C[a, b]$ be the set of continuous functions on the interval $[a, b]$. For $f, g \in C[a, b]$ define

$$
d(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

Prove this is a metric on $C[a, b]$.
3. Rudin page $43 / 5$
4. Rudin page $43 / 9$
5. Determine the union and prove your answer:

$$
\bigcup_{n=3}^{\infty}\left[1+\frac{1}{n}, 2-\frac{2}{n}\right) .
$$

6. A point $x$ in a metric space $X$ is a boundary point of $E \subseteq X$ if for each $\varepsilon>0$,

$$
N_{\varepsilon}(x) \cap E \neq \emptyset \quad \text { and } \quad N_{\varepsilon}(x) \cap E^{c} \neq \emptyset .
$$

The set of all boundary points of $E$ is called the boundary of $E$ and is denoted by $\partial E$.
(a) Prove $E$ is closed iff $\partial E \subseteq E$.
(b) Prove $E \cup \partial E=\bar{E}$.
(c) Show there are sets $A, B \subseteq \mathbb{R}$ such that $\partial(A \cup B) \neq(\partial A) \cup(\partial B)$.
(d) Show there are sets $A, B \subseteq \mathbb{R}$ such that $\partial(A \cap B) \neq(\partial A) \cap(\partial B)$.
(e) Prove $\partial E=\bar{E} \backslash E^{o}$.
7. Let $X$ be a metric space and $E \subseteq Y \subseteq X$. Show $E$ is closed relative to $Y$ iff for some closed $F \subseteq X, E=Y \cap F$.
8. Suppose $X$ is a metric space and $A, B \subseteq X$ are compact. Prove $A \cap B$ and $A \cup B$ are compact.
9. Prove that $\partial(A \cap B) \cap\left(A^{c} \cup(\partial B)^{c}\right) \subseteq \partial A$.
10. Prove that if $\left\{p_{n}\right\}$ is Cauchy in the metric space $X$ and some subsequence converges, then $\left\{p_{n}\right\}$ converges.
11. Equip $\mathbb{R}$ with the discrete metric. Prove the resulting metric space is complete.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x+y$. Sketch $f^{-1}([0,1])$. HINT: what is $f^{-1}(\{c\})$ ?
13. Prove $f^{-1}\left(E^{c}\right)=\left(f^{-1}(E)\right)^{c}$.
14. Rudin page $98 / 2$
15. Rudin page $98 / 3$
16. A metric space $X$ is separable if it contains a countable dense subset.

A separable metric space has the Lindelöf Property: If $\left\{V_{\alpha}\right\}$ is an open cover of $E \subseteq X$, then there are countably many $\alpha_{1}, \alpha_{2}, \ldots$ such that

$$
E \subseteq \bigcup_{n=1}^{\infty} V_{\alpha_{n}}
$$

This was proved in 527 for $\mathbb{R}$ using that $\mathbb{Q}$ is dense in $\mathbb{R}$-the same proof works for any separable metric space.

In a metric space $X$, let $\left\{V_{\alpha}\right\}_{\alpha \in A}$ be a collection of nonempty open sets satisfying $V_{\alpha} \cap V_{\beta}=\emptyset$ for all $\alpha \neq \beta$ in $A$. Prove that if $X$ is separable, then $A$ is countable.
17. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$. Then $g \circ f: A \rightarrow C$. Prove the following identity for the inverse images:

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

18. Use the previous problem to give an EASY proof of the composition rule: Let $X$, $Y$, and $Z$ be metric spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous functions then $g \circ f: X \rightarrow Z$ is also continuous.
19. Rudin page $116 / 17$ HINT to the hint in the text. After following the hint in the text, assume $f^{(3)}(x)<3$ for all $x \in(-1,1)$ and use the last equation in the hint to get a contradiction.
20. Prove for $x \in(0, \pi)$ and $n \in \mathbb{N}$,

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots-\frac{x^{4 n-1}}{(4 n-1)!}<\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{x^{4 n+1}}{(4 n+1)!}
$$

21. Rudin page $166 / 5$, first part only (i.e., omit the last sentence in the problem)
22. Evaluate the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{3} \sqrt{x+1+\sin \frac{x}{n}} d x
$$

and justify your answer.
23. Rudin page $165 / 7$
24. Rudin page $165 / 9$, omit the part about the converse
25. Rudin page $165 / 1$
26. Rudin page $165 / 2$ HINT: the previous problem will be useful.
27. Suppose $K$ is a compact metric space and $E$ is a countable dense subset of $K$. Given $\delta>0$, prove there are $x_{1}, \ldots, x_{n} \in E$ such that

$$
K \subseteq N_{\delta}\left(x_{1}\right) \cup \cdots \cup N_{\delta}\left(x_{n}\right) .
$$

28. Rudin page $79 / 10$
29. Rudin page $82 / 23$
30. Suppose $\sum_{k=0}^{\infty} a_{k} x^{k}$ has radius of convergence $R \in(0, \infty)$.
(a) Find the radius of convergence of $\sum_{k=0}^{\infty} a_{k} x^{2 k}$.
(b) Find the radius of convergence of $\sum_{k=0}^{\infty} a_{k}^{2} x^{k}$.
31. Suppose $\left\{a_{k}\right\}$ is a bounded sequence of real numbers. Prove $\sum_{k=0}^{\infty} a_{k} x^{k}$ has a positive radius of convergence.
32. Prove that

$$
f(x)=\sum_{k=0}^{\infty}\left(\frac{x}{(-1)^{k}+4}\right)^{k}
$$

is differentiable on $(-3,3)$.
33. Rudin page $168 / 18$

Useful facts: Theorem 6.20 in the text, and the fact that if $f$ is Riemann integrable on on $[a, b]$, then so is $|f|$ and $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.
34. Rudin page $169 / 20$
35. Rudin page $168 / 16$

HINT: Get $\delta$ from equicontinuity for $\varepsilon / 3$ and cover $K$ with $\left\{N_{\delta}(y)\right\}_{y \in K}$.
36. Decide if the limit exists. If it does, find it. Justify your answer.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{|x y|}}{\left(x^{2}+y^{2}\right)^{1 / 3}}$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{4}}{x^{2}+2 y^{4}}$.
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x \sin y}{x^{2}+y^{2}}$.
37. Compute $f_{x}$ and find where it is continuous.
(a) $f(x, y)= \begin{cases}\frac{x^{4}+y^{4}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0) .\end{cases}$
(b) $f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{1 / 3}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0) .\end{cases}$
38. Rudin page 239/6 (Note: $D_{1} f=f_{x}$ and $D_{2} f=f_{y}$ ).
39. Let

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Prove $f$ is differentiable, but $f^{\prime}$ is not continuous.
40. Prove that the first partials of $f(x, y)=(x y)^{1 / 5}$ exist at $(x, y)=(0,0)$, but $f$ is not differentiable there.
41. Let $U \subset \mathbb{R}^{n}$ be open. Suppose $f: U \rightarrow \mathbb{R}$ is differentiable and positive. Prove

$$
\left(\frac{1}{f}\right)^{\prime}=-\frac{f^{\prime}}{f^{2}}
$$

42. Let $u(x, t)=\frac{e^{-x^{2} / 4 t}}{\sqrt{4 \pi t}}, \quad t>0, \quad x \in \mathbb{R}$. If $a>0$, show $u(x, t) \rightarrow 0$ as $t \rightarrow 0^{+}$, uniformly for $x \in[a, \infty)$.
43. Let $u: \mathbb{R} \rightarrow[0, \infty)$ be differentiable and set $F(x, y, z)=u\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$. For $(x, y, z) \neq(0,0,0)$, compute

$$
\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}}
$$

44. Rudin page 239/8 HINT: $f$ has a local maximum at $\mathbf{x} \in E$-where $E \subseteq \mathbb{R}^{n}$ is open-if there exists $\delta>0$ such that $f(\mathbf{y}) \leq f(\mathbf{x})$ for all $\mathbf{y} \in N_{\delta}(\mathbf{x})$. Compute $\frac{\partial f}{\partial x_{j}}(\mathbf{x})$.
45. Text page 240/13

## Math 593

Basic reference: Folland's Real Analysis

- Chapter 1; Chapter 2: 2.1-2.6; Chapter 6: 6.1.

Here are some typical homework problems.

1. Let $X$ be uncountable and define

$$
\mathcal{A}=\left\{E \subseteq X: E \text { is countable or } E^{c} \text { is countable }\right\}
$$

Prove $\mathcal{A}$ is a $\sigma$-algebra.
2. Prove that a nonempty collection of subsets of a nonvoid set $X$ is a $\sigma$-algebra iff it is closed under complements and countable intersections.
3. (a) Using parts (a)-(b) of Proposition 1.2, prove the part about $\mathcal{E}_{3}$ in (c).
(b) Using parts (a)-(c) of Proposition 1.2, prove the part about $\mathcal{E}_{5}$ in (d).
4. Let $X=\{1,2,3,4,5,6\}$ and $\mathcal{E}=\{\{6\},\{2,4\}\}$. Find the $\sigma$-algebra generated by $\mathcal{E}$.
5. Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots$, be a countable collection of $\sigma$-algebras. Then $\bigcup_{n=1}^{\infty} \mathcal{B}_{n}$ need not be a $\sigma$-algebra. In fact, $\mathcal{B}_{1} \bigcup \mathcal{B}_{2}$ need not be a $\sigma$-algebra. Prove the latter, hence the former.
6. Suppose $X \neq \emptyset$ and $\mathcal{E}$ is the set of all one point subsets of $X$. Prove

$$
\mathcal{M}(\mathcal{E})=\{A \subseteq X: A \text { is countable }\} \cup\left\{A \subseteq X: A^{c} \text { is countable }\right\}
$$

7. Text $\S 1.3$, page $27 / 6$
8. Text $\S 1.3$, page $27 / 9$
9. Let $\mu$ be a finitely additive measure on a measurable space $(X, \mathcal{M})$. Prove $\mu$ is countably additive iff it is continuous from below.
10. Let $X$ be countably infinite and let $\mathcal{M}=\mathcal{P}(X)$. Define $\mu: \mathcal{M} \rightarrow[0, \infty]$ by $\mu(E)=0$ if $E$ is finite and $\infty$ if $E$ is infinite.
(a) Show $\mu$ is finitely additive but not countably additive.
(b) Show that $X$ is the limit of an increasing sequence of sets $E_{n}$ with $\mu\left(E_{n}\right)=0$ for all $n$, but $\mu(X)=\infty$.
11. Text $\S 1.4 / 17$
12. Text $\S 1.4 / 18$ ab HINT on (b), use part (a)
13. Text $\S 1.4 / 19$ HINT: On $\Leftarrow$ use $18(\mathrm{a})$ with $\varepsilon=1 / n$ to get corresponding $A_{n}$ and use what it means for $A_{n}$ to be $\mu^{*}$ measurable.
14. For $a, b \in \mathbb{R}$, prove for Lebesgue measure $m$,
(a) $m((a, b))=b-a$
(b) $m([a, b])=b-a$
15. Prove that for any Lebesgue measurable set $E \subseteq \mathbb{R}$

$$
m(E)=\inf \left\{\sum_{j=1}^{\infty} m\left(\left[a_{j}, b_{j}\right]\right): E \subseteq \bigcup_{j=1}^{\infty}\left[a_{j}, b_{j}\right]\right\}
$$

16. Recall the definition of the symmetric difference of sets $A$ and $B$ :

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Let $m$ be Lebesgue measure on $\mathbb{R}$ and suppose $E \subseteq \mathbb{R}$ is Lebesgue measurable $\mathrm{w} m(E)<\infty$. Prove that for each $\varepsilon>0$ there exists a finite union $A$ of open intervals such that $m(A \Delta E)<\varepsilon$.

HINT: use outer regularity with $\varepsilon / 2$. What is the characterization of open subsets in $\mathbb{R}$ in terms of open intervals?
17. Recall that a function $F: \mathbb{R} \rightarrow \mathbb{R}$ is right continuous if

$$
\lim _{y \downarrow x} F(y)=F(x) \quad \text { for all } x \in \mathbb{R}
$$

Let $\mu$ be a Borel measure on $\mathbb{R}$; that is, $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right)$ is a measure space. Define the distribution function $F: \mathbb{R} \rightarrow \mathbb{R}$ of $\mu$ by $F(x)=\mu((-\infty, x])$. Since $\mu$ is continuous from above, $F$ is right continuous. By monotonicity of $\mu, F$ is nondecreasing. Prove the following:
(a) For $a<b, \mu((a, b])=F(b)-F(a)$
(b) $\mu(\{a\})=F(a)-F(a-)$.
(c) $\mu((a, b))=F(b-)-F(a)$.
(d) $\mu([a, b))=F(b-)-F(a-)$.
18. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove $(g \circ f)^{-1}=f^{-1} \circ g^{-1}: \mathcal{P}(Z) \rightarrow \mathcal{P}(X)$.
19. Prove $f^{-1}\left(E^{c}\right)=\left(f^{-1}(E)\right)^{c}$.
20. Prove that if $\mathcal{M}$ is a $\sigma$-algebra, then so is $f^{-1}(\mathcal{M})$.
21. Given a measurable space $(X, \mathcal{M})$, prove the following are equivalent:
(a) $f: X \rightarrow \overline{\mathbb{R}}$ is measurable.
(b) $f^{-1}((\lambda, \infty]) \in \mathcal{M}$ for all $\lambda \in \overline{\mathbb{R}}$.
(c) $f^{-1}([-\infty, \lambda)) \in \mathcal{M}$ for all $\lambda \in \overline{\mathbb{R}}$.
22. Let $(X, \mathcal{M})$ be a measurable space and suppose $f, g: X \rightarrow \overline{\mathbb{R}}$ are measurable. With the convention that $\infty-\infty=0$, prove $h=f+g$ is measurable.

HINTS:
(a) Explain why $E_{\infty}=\{x \in X: f(x)=-g(x)= \pm \infty\}$ is measurable.
(b) Find $h^{-1}(\{\infty\})$ and $h^{-1}(\{-\infty\})$ in terms of $f^{-1}$ and $g^{-1}$.
(c) Look at $h^{-1}((b, \infty)$ ) for $b \in \mathbb{R}$ and consider cases $0 \leq b$ and $b<0$.
23. Text page 48/1.

For this problem you need the following definition. Given a measurable space $(X, \mathcal{M})$ and $Y \in \mathcal{M}$, we say a function $f: Y \rightarrow \overline{\mathbb{R}}$ is measurable on $Y$ if for all $B \in \mathcal{B}_{\overline{\mathbb{R}}}$, $f^{-1}(B) \cap Y \in \mathcal{M}$. This is equivalent to saying $\left.f\right|_{Y}$ is $\mathcal{M}_{Y}$ measurable, where $\mathcal{M}_{Y}=$ $\{F \cap Y: F \in \mathcal{M}\}$.
24. Text page $48 / 3$

HINT: $\{x: f(x)<g(x)\}=\bigcup_{r \in \mathbb{Q}}\{x: f(x)<r \leq g(x)\}$
25. Text page $48 / 4$
26. Text page $48 / 5$
27. Text page $48 / 8$

HINTS:

- Explain why $f$ measurable implies $-f$ measurable and use this fact to show it suffices to consider $f$ monotone nondecreasing.
- Prove $f^{-1}([a, \infty))$ is an interval: recall an interval in $\mathbb{R}$ is any set $I$ such that $x, y \in I$ and $z$ between $x$ and $y$ implies $x \in I$.

28. Text page $52 / 13$.

HINTS: You want to show $\limsup \int_{E} f_{n} \leq \int_{E} f \leq \liminf \int_{E} f_{n}$. To get the lower inequality, look at $\int_{E} f=\int f-\int_{E^{c}} f$.
You might find the following properties of limsup and liminf useful:
(a) $\liminf \left(a_{n}+b_{n}\right) \geq \liminf a_{n}+\liminf b_{n}$
(b) $\lim \sup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}$
(c) $-\limsup a_{n}=\lim \inf \left(-a_{n}\right)$
(d) $-\liminf a_{n}=\lim \sup \left(-a_{n}\right)$
(e) If $\lim a_{n}$ exists then $\liminf \left(a_{n}+b_{n}\right)=\lim a_{n}+\liminf b_{n}$ and $\limsup \left(a_{n}+b_{n}\right)=$ $\lim a_{n}+\limsup b_{n}$

For the second part, write $f_{n}=f+g_{n}$ where $f$ and $g_{n}$ are nonzero on disjoint sets.
29. Text page $52 / 14$
30. Text page $58 / 18$
31. Text page $58 / 19$
32. Text page $58 / 20$
33. Text page $58 / 21$
34. Text page $60 / 26$
35. Text page $63 / 33$
36. Text page $63 / 38$
37. Text page $63 / 39$
38. Text page $63 / 42$

Some hints on checking measurability of real valued functions:
(a) The product, difference and sum of measurable functions is measurable (Prop. 4.6)
(b) A continuous function from $A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable, hence $\mathcal{L}$ measurableremember $\mathcal{L}$ is the collection of Lebesgue measurable sets. Reason: $f^{-1}$ (Borel) $=$ Borel $\in \mathcal{L}$.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable, then regarded as the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $F(x, y)=f(x)$, it is $\mathcal{L}^{2}$ measurable: $F^{-1}($ Borel $)=\{(x, y): F(x, y) \in$ Borel $\}=\{(x, y): f(x) \in$ Borel $\}=f^{-1}(B) \times \mathbb{R}$, which is measurable.
(d) Example: Say $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are Lebesgue measurable. Then

$$
G=\left\{(x, y): f(x)<y^{3}\right\}
$$

is measurable for the product $\sigma$-algebra $\mathcal{L}^{2}$. To see why, observe that for $h(x, y)=$ $f(x)-y^{3}$, we have $G=h^{-1}((-\infty, 0))$. Thus it suffices to show $h$ is measurable for $\mathcal{L}^{2}$. But the function $y \rightarrow y^{3}$ is continuous, hence Lebesgue measurable, hence $\mathcal{L}^{2}$ measurable by (c). Since $f$ is $\mathcal{L}^{2}$ measurable by (c) too, it follows that $h$ is $\mathcal{L}^{2}$ measurable measurable because it is a difference of measurable functions.
39. Text page $68 / 46$

HINT on evaluating $\iint I_{D} d(\mu \times \nu)$ : Use the definition of $\mu \times \nu$ as outer measure and note that for a rectangle $A \times B$ with $\mu(A \cap B)>0$, it must be true that $A \cap B$ is infinite (explain why).
40. Text page 69/48

HINTS: Note that $\mu \times \nu$ is a counting measure on the product space - this is easy to verify (do it). There is a measurable set $E$ for which $|f|=I_{E}$.
41. Page $77 / 56$. Make sure you verify the hypotheses of any theorem you use.

HINT: Write out $\int_{0}^{a} g(x) d x$ explicitly as a double integral $\int_{0}^{a} \int_{0}^{a} h(x, t) d t, d x$. Use Tonelli to show $|h|$ is in $L^{1}$ then use Fubini to finish.
42. Let $(X, \mathcal{M}, \mu)$ be a measure space and let $(Y, \mathcal{N}, \nu)=\left([0, \infty), \mathcal{B}_{[0, \infty)}, m\right)$, where $m$ is Lebesgue measure. Use the Fubini-Tonelli Theorem to prove that if $f: X \rightarrow[0, \infty)$ is measurable, then

$$
\int f d \mu=\int_{0}^{\infty} \mu(\{x: f(x)>y)\} d y
$$

where we follow the standard convention to write $d y$ for $d m(y)$. Make sure you verify the hypotheses of any theorem you use.
43. If $1 \leq p<r \leq \infty$, prove that $L^{p} \cap L^{r}$ is a Banach space with norm $\|f\|=\|f\|_{p}+\|f\|_{r}$. Make sure you verify that the set is a vector space and $\|f\|$ is a norm.

