
Basic Real Analysis Comprehensive Exam Syllabus

Math 528

Basic references: Rudin’s Principles of Mathematical Analysis and Wade’s An Introduction
to Analysis, Fourth Edition.

• Rudin: Chapter 2; Chapter 3: 3.1–3.19, 3.38; Chapter 4: 4.8, 4.13–4.23; Chapter
5: 5.15; Chapter 7; Chapter 9: 9.10–9.21, 9.24–9.28. There is a gentler approach to
chapter 9 in Wade’s book—see the next bullet point.

• Wade: Chapter 11: Section 11.1 through Example 11.3; Section 11.2; Section 11.4;
Section 11.6

Examples of typical homework problems (not an exhaustive list)

THIS IS NOT A LIST OF POTENTIAL EXAM QUESTIONS

1. Rudin page 44/11

2. Let C[a, b] be the set of continuous functions on the interval [a, b] . For f, g ∈ C[a, b]
define

d(f, g) =

∫ b

a

|f(x)− g(x)| dx.

Prove this is a metric on C[a, b] .

3. Rudin page 43/5

4. Rudin page 43/9

5. Determine the union and prove your answer:

∞⋃
n=3

[
1 +

1

n
, 2− 2

n

)
.

6. A point x in a metric space X is a boundary point of E ⊆ X if for each ε > 0,

Nε(x) ∩ E 6= ∅ and Nε(x) ∩ Ec 6= ∅.

The set of all boundary points of E is called the boundary of E and is denoted by ∂E .

(a) Prove E is closed iff ∂E ⊆ E .

(b) Prove E ∪ ∂E = E .

(c) Show there are sets A,B ⊆ R such that ∂(A ∪B) 6= (∂A) ∪ (∂B).

(d) Show there are sets A,B ⊆ R such that ∂(A ∩B) 6= (∂A) ∩ (∂B).

(e) Prove ∂E = E\Eo .

7. Let X be a metric space and E ⊆ Y ⊆ X . Show E is closed relative to Y iff for some
closed F ⊆ X , E = Y ∩ F .



8. Suppose X is a metric space and A,B ⊆ X are compact. Prove A ∩ B and A ∪ B
are compact.

9. Prove that ∂(A ∩B) ∩ (Ac ∪ (∂B)c) ⊆ ∂A .

10. Prove that if {pn} is Cauchy in the metric space X and some subsequence converges,
then {pn} converges.

11. Equip R with the discrete metric. Prove the resulting metric space is complete.

12. Let f : R2 → R be given by f(x, y) = x + y . Sketch f−1([0, 1]). HINT: what is
f−1({c})?

13. Prove f−1(Ec) = (f−1(E))
c
.

14. Rudin page 98/2

15. Rudin page 98/3

16. A metric space X is separable if it contains a countable dense subset.

A separable metric space has the Lindelöf Property: If {Vα} is an open cover of E ⊆ X ,
then there are countably many α1, α2, . . . such that

E ⊆
∞⋃
n=1

Vαn .

This was proved in 527 for R using that Q is dense in R—the same proof works for
any separable metric space.

In a metric space X , let {Vα}α∈A be a collection of nonempty open sets satisfying
Vα ∩ Vβ = ∅ for all α 6= β in A . Prove that if X is separable, then A is countable.

17. Suppose f : A→ B and g : B → C . Then g ◦f : A→ C . Prove the following identity
for the inverse images:

(g ◦ f)−1 = f−1 ◦ g−1.

18. Use the previous problem to give an EASY proof of the composition rule: Let X ,
Y ,and Z be metric spaces. If f : X → Y and g : Y → Z are continuous functions
then g ◦ f : X → Z is also continuous.

19. Rudin page 116/17 HINT to the hint in the text. After following the hint in the text,
assume f (3)(x) < 3 for all x ∈ (−1, 1) and use the last equation in the hint to get a
contradiction.

20. Prove for x ∈ (0, π) and n ∈ N ,

x− x3

3!
+
x5

5!
− · · · − x4n−1

(4n− 1)!
< sinx < x− x3

3!
+
x5

5!
− · · ·+ x4n+1

(4n+ 1)!

21. Rudin page 166/5, first part only (i.e., omit the last sentence in the problem)



22. Evaluate the limit

lim
n→∞

∫ 3

0

√
x+ 1 + sin

x

n
dx

and justify your answer.

23. Rudin page 165/7

24. Rudin page 165/9, omit the part about the converse

25. Rudin page 165/1

26. Rudin page 165/2 HINT: the previous problem will be useful.

27. Suppose K is a compact metric space and E is a countable dense subset of K . Given
δ > 0, prove there are x1, . . . , xn ∈ E such that

K ⊆ Nδ(x1) ∪ · · · ∪Nδ(xn).

28. Rudin page 79/10

29. Rudin page 82/23

30. Suppose
∞∑
k=0

akx
k has radius of convergence R ∈ (0,∞).

(a) Find the radius of convergence of
∞∑
k=0

akx
2k .

(b) Find the radius of convergence of
∞∑
k=0

a2kx
k .

31. Suppose {ak} is a bounded sequence of real numbers. Prove
∞∑
k=0

akx
k has a positive

radius of convergence.

32. Prove that

f(x) =
∞∑
k=0

(
x

(−1)k + 4

)k
is differentiable on (−3, 3).

33. Rudin page 168/18

Useful facts: Theorem 6.20 in the text, and the fact that if f is Riemann integrable

on on [a, b] , then so is |f | and
∣∣∣∫ ba f(t) dt

∣∣∣ ≤ ∫ ba |f(t)| dt .

34. Rudin page 169/20

35. Rudin page 168/16

HINT: Get δ from equicontinuity for ε/3 and cover K with {Nδ(y)}y∈K .



36. Decide if the limit exists. If it does, find it. Justify your answer.

(a) lim
(x,y)→(0,0)

√
|xy|

(x2 + y2)1/3
.

(b) lim
(x,y)→(0,0)

x2 + y4

x2 + 2y4
.

(c) lim
(x,y)→(0,0)

sinx sin y

x2 + y2
.

37. Compute fx and find where it is continuous.

(a) f(x, y) =


x4 + y4

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

(b) f(x, y) =


x2 − y2

(x2 + y2)1/3
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

38. Rudin page 239/6 (Note: D1f = fx and D2f = fy ).

39. Let

f(x) =


x2 sin

1

x
, x 6= 0

0, x = 0.

Prove f is differentiable, but f ′ is not continuous.

40. Prove that the first partials of f(x, y) = (xy)1/5 exist at (x, y) = (0, 0), but f is not
differentiable there.

41. Let U ⊂ Rn be open. Suppose f : U → R is differentiable and positive. Prove(
1

f

)′
= − f

′

f 2
.

42. Let u(x, t) =
e−x

2/4t

√
4πt

, t > 0, x ∈ R . If a > 0, show u(x, t) → 0 as t → 0+ ,

uniformly for x ∈ [a,∞).

43. Let u : R → [0,∞) be differentiable and set F (x, y, z) = u(
√
x2 + y2 + z2). For

(x, y, z) 6= (0, 0, 0), compute√(
∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2

.

44. Rudin page 239/8 HINT: f has a local maximum at x ∈ E—where E ⊆ Rn is open—if
there exists δ > 0 such that f(y) ≤ f(x) for all y ∈ Nδ(x). Compute ∂f

∂xj
(x).



45. Text page 240/13

Math 593

Basic reference: Folland’s Real Analysis

• Chapter 1; Chapter 2: 2.1–2.6; Chapter 6: 6.1.

Here are some typical homework problems.

1. Let X be uncountable and define

A = {E ⊆ X : E is countable or Ec is countable}.

Prove A is a σ -algebra.

2. Prove that a nonempty collection of subsets of a nonvoid set X is a σ -algebra iff it is
closed under complements and countable intersections.

3. (a) Using parts (a)–(b) of Proposition 1.2, prove the part about E3 in (c).

(b) Using parts (a)–(c) of Proposition 1.2, prove the part about E5 in (d).

4. Let X = {1, 2, 3, 4, 5, 6} and E = {{6}, {2, 4}} . Find the σ -algebra generated by E .

5. Let B1,B2, . . . , be a countable collection of σ -algebras. Then
∞⋃
n=1

Bn need not be a

σ -algebra. In fact, B1
⋃
B2 need not be a σ -algebra. Prove the latter, hence the

former.

6. Suppose X 6= ∅ and E is the set of all one point subsets of X . Prove

M(E) = {A ⊆ X : A is countable} ∪ {A ⊆ X : Ac is countable}.

7. Text §1.3, page 27/6

8. Text §1.3, page 27/9

9. Let µ be a finitely additive measure on a measurable space (X,M). Prove µ is
countably additive iff it is continuous from below.

10. Let X be countably infinite and let M = P(X). Define µ :M→ [0,∞] by µ(E) = 0
if E is finite and ∞ if E is infinite.

(a) Show µ is finitely additive but not countably additive.

(b) Show that X is the limit of an increasing sequence of sets En with µ(En) = 0
for all n , but µ(X) =∞ .

11. Text §1.4/17

12. Text §1.4/18ab HINT on (b), use part (a)



13. Text §1.4/19 HINT: On ⇐ use 18(a) with ε = 1/n to get corresponding An and use
what it means for An to be µ∗ measurable.

14. For a, b ∈ R , prove for Lebesgue measure m ,

(a) m((a, b)) = b− a
(b) m([a, b]) = b− a

15. Prove that for any Lebesgue measurable set E ⊆ R

m(E) = inf

{
∞∑
j=1

m([aj, bj]) : E ⊆
∞⋃
j=1

[aj, bj]

}
.

16. Recall the definition of the symmetric difference of sets A and B :

A∆B = (A\B) ∪ (B\A).

Let m be Lebesgue measure on R and suppose E ⊆ R is Lebesgue measurable
wm(E) < ∞ . Prove that for each ε > 0 there exists a finite union A of open in-
tervals such that m(A∆E) < ε .

HINT: use outer regularity with ε/2. What is the characterization of open subsets in
R in terms of open intervals?

17. Recall that a function F : R→ R is right continuous if

lim
y↓x

F (y) = F (x) for all x ∈ R .

Let µ be a Borel measure on R ; that is, (R,BR, µ) is a measure space. Define the
distribution function F : R → R of µ by F (x) = µ((−∞, x]). Since µ is continuous
from above, F is right continuous. By monotonicity of µ , F is nondecreasing. Prove
the following:

(a) For a < b , µ((a, b]) = F (b)− F (a)

(b) µ({a}) = F (a)− F (a−).

(c) µ((a, b)) = F (b−)− F (a).

(d) µ([a, b)) = F (b−)− F (a−).

18. Let f : X → Y and g : Y → Z . Prove (g ◦ f)−1 = f−1 ◦ g−1 : P(Z)→ P(X).

19. Prove f−1(Ec) = (f−1(E))c .

20. Prove that if M is a σ -algebra, then so is f−1(M).

21. Given a measurable space (X,M), prove the following are equivalent:

(a) f : X → R is measurable.

(b) f−1((λ,∞]) ∈M for all λ ∈ R .

(c) f−1([−∞, λ)) ∈M for all λ ∈ R .



22. Let (X,M) be a measurable space and suppose f, g : X → R are measurable. With
the convention that ∞−∞ = 0, prove h = f + g is measurable.

HINTS:

(a) Explain why E∞ = {x ∈ X : f(x) = −g(x) = ±∞} is measurable.

(b) Find h−1({∞}) and h−1({−∞}) in terms of f−1 and g−1 .

(c) Look at h−1((b,∞)) for b ∈ R and consider cases 0 ≤ b and b < 0.

23. Text page 48/1.

For this problem you need the following definition. Given a measurable space (X,M)
and Y ∈ M , we say a function f : Y → R is measurable on Y if for all B ∈ BR ,
f−1(B) ∩ Y ∈M . This is equivalent to saying f |Y is MY measurable, where MY =
{F ∩ Y : F ∈M}.

24. Text page 48/3

HINT: {x : f(x) < g(x)} =
⋃
r∈Q{x : f(x) < r ≤ g(x)}

25. Text page 48/4

26. Text page 48/5

27. Text page 48/8

HINTS:

• Explain why f measurable implies −f measurable and use this fact to show it
suffices to consider f monotone nondecreasing.

• Prove f−1([a,∞)) is an interval: recall an interval in R is any set I such that
x, y ∈ I and z between x and y implies x ∈ I .

28. Text page 52/13.

HINTS: You want to show lim sup
∫
E
fn ≤

∫
E
f ≤ lim inf

∫
E
fn . To get the lower

inequality, look at
∫
E
f =

∫
f −

∫
Ec f .

You might find the following properties of lim sup and lim inf useful:

(a) lim inf(an + bn) ≥ lim inf an + lim inf bn

(b) lim sup(an + bn) ≤ lim sup an + lim sup bn

(c) − lim sup an = lim inf(−an)

(d) − lim inf an = lim sup(−an)

(e) If lim an exists then lim inf(an + bn) = lim an + lim inf bn and lim sup(an + bn) =
lim an + lim sup bn

For the second part, write fn = f + gn where f and gn are nonzero on disjoint sets.

29. Text page 52/14



30. Text page 58/18

31. Text page 58/19

32. Text page 58/20

33. Text page 58/21

34. Text page 60/26

35. Text page 63/33

36. Text page 63/38

37. Text page 63/39

38. Text page 63/42

Some hints on checking measurability of real valued functions:

(a) The product, difference and sum of measurable functions is measurable (Prop.
4.6)

(b) A continuous function from A ⊆ R→ R is Borel measurable, hence L measurable—
remember L is the collection of Lebesgue measurable sets. Reason: f−1(Borel) =
Borel ∈ L .

(c) If f : R→ R is Lebesgue measurable, then regarded as the function F : R2 → R
given by F (x, y) = f(x), it is L2 measurable: F−1(Borel) = {(x, y) : F (x, y) ∈
Borel} = {(x, y) : f(x) ∈ Borel} = f−1(B)× R , which is measurable.

(d) Example: Say f, g : R→ R are Lebesgue measurable. Then

G = {(x, y) : f(x) < y3}

is measurable for the product σ -algebra L2 . To see why, observe that for h(x, y) =
f(x)− y3 , we have G = h−1((−∞, 0)). Thus it suffices to show h is measurable
for L2 . But the function y → y3 is continuous, hence Lebesgue measurable, hence
L2 measurable by (c). Since f is L2 measurable by (c) too, it follows that h is
L2 measurable measurable because it is a difference of measurable functions.

39. Text page 68/46

HINT on evaluating
∫∫

IDd(µ× ν): Use the definition of µ× ν as outer measure and
note that for a rectangle A × B with µ(A ∩ B) > 0, it must be true that A ∩ B is
infinite (explain why).

40. Text page 69/48

HINTS: Note that µ× ν is a counting measure on the product space—this is easy to
verify (do it). There is a measurable set E for which |f | = IE .



41. Page 77/56. Make sure you verify the hypotheses of any theorem you use.

HINT: Write out
∫ a
0
g(x) dx explicitly as a double integral

∫ a
0

∫ a
0
h(x, t) dt, dx . Use

Tonelli to show |h| is in L1 then use Fubini to finish.

42. Let (X,M, µ) be a measure space and let (Y,N , ν) = ([0,∞),B[0,∞),m), where m is
Lebesgue measure. Use the Fubini-Tonelli Theorem to prove that if f : X → [0,∞) is
measurable, then ∫

f dµ =

∫ ∞
0

µ({x : f(x) > y)} dy,

where we follow the standard convention to write dy for dm(y). Make sure you verify
the hypotheses of any theorem you use.

43. If 1 ≤ p < r ≤ ∞ , prove that Lp∩Lr is a Banach space with norm ‖f‖ = ‖f‖p+‖f‖r .
Make sure you verify that the set is a vector space and ‖f‖ is a norm.


