Math 525 Masters Exam Syllabus

Text: Linear Algebra Done Right, Third Edition, by Sheldon Axler Chapters: 1-3, 5.

Examples of typical homework problems (not an exhaustive list):

Throughout $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and U, V, W are vector spaces over \mathbb{F} .

- **1.** Let U_1, U_2 be subspaces of V. Prove that $U_1 \cap U_2$ is a subspace of V.
- **2.** Let U_1, U_2 be subspaces of V. Prove that $U_1 \cup U_2$ is a subspace of V if and only if either $U_1 \subset U_2$ or $U_2 \subset U_1$.
- **3.** Prove or give a counterexample: If U_1, U_2, W are subspaces such that $V = U_1 \oplus W$ and $V = U_2 \oplus W$, then $U_1 = U_2$.
- **4.** Let *U* be the set of all polynomial functions *f* of the form $f(x) = a + bx + cx^2$, where $a, b, c \in \mathbb{F}$. Prove that *U* is a subspace of $\mathbb{F}[x]$.
- 5. Prove that if v_1, \ldots, v_n are linearly independent in V, then so is the list $v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n, v_n$.
- 6. Let $W = \{(a, b, c) \in \mathbb{R}^3 | a + 2b + 3c = 0\}$. Prove that W is finite-dimensional by finding a finite spanning set for W.
- 7. Suppose that V is finite-dimensional and U is a subspace of V such that $\dim V = \dim U$. Prove that U = V.
- 8. Prove or disprove: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3, v_4 \notin U$, then v_1, v_2 is a basis of U.
- **9.** Suppose that V is finite dimensional. Prove that if U_1, \ldots, U_m are subspaces of V such that $V = U_1 \oplus \ldots \oplus U_m$, then dim $V = \dim U_1 + \ldots + \dim U_m$.
- 10. Suppose that V is finite-dimensional. If U, W are subspaces with $\dim U + \dim W > \dim V$, prove that $U \cap W \neq \{0\}$.
- **11.** Suppose that $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that $T(v_1), \ldots, T(v_m)$ is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.
- **12.** Suppose that dim V = 1. Show that for any $T \in \mathcal{L}(V, V)$ there exists $\lambda \in \mathbb{F}$ such that $T(v) = \lambda v$ for all $v \in V$.
- **13.** Suppose *V* is finite-dimensional and let *U* be a subspace of *V* and $S \in \mathcal{L}(U, W)$. Prove that there exists $T \in \mathcal{L}(V, W)$ such that T(u) = S(u) for all $u \in U$.
- **14.** Let $S, T \in \mathcal{L}(V, V)$ such that range $S \subset \text{null } T$. Prove that $(ST)^2 = 0$.
- **15.** Suppose that *T* is a linear map from *V* to \mathbb{F} . Prove that if $u \in V$ is not in null *T*, then $V = \text{null } T \oplus \{au : a \in F\}.$
- **16.** Prove that if $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n are linearly independent in V, then $T(v_1), \ldots, T(v_n)$ are linearly independent in W.
- **17.** Prove that if $T \in \mathcal{L}(V, W)$ is surjective and v_1, \ldots, v_n span V, then $T(v_1), \ldots, T(v_n)$ span W.
- **18.** Suppose that $T \in \mathcal{L}(\mathbb{F}^5, \mathbb{F}^3)$ such that null $T = \{(x_1, \dots, x_5) \in \mathbb{F}^5 \mid x_1 + x_2 = 0 \text{ and } x_4 = 3x_5\}$. Prove that *T* is not surjective.
- **19.** Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that null S and range S are invariant under T.

- **20.** Suppose that $T, S \in \mathcal{L}(V)$ and that *S* is invertible.
 - (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
 - (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS?$
- **21.** Suppose that $T \in \mathcal{L}(V)$ is invertible and $\lambda \in \mathbb{F} \setminus \{0\}$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} . 22. Suppose that V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST and TS have the
- same eigenvalues.
- **23.** Suppose that $S, T \in \mathcal{L}(V)$ and S is invertible. Let $f(x) \in \mathbb{F}[x]$ be a polynomial. Prove that $f(STS^{-1}) = Sf(T)S^{-1}$.
- **24.** Suppose that $T \in \mathcal{L}(V)$ and U is a subspace of V that is invariant under T. Prove that U is invariant under f(T) for all $f(x) \in \mathbb{F}[x]$.
- **25.** Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{range } T$.
- **26.** Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, and $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.
- **27.** Suppose $T \in \mathcal{L}(V)$ has a diagonal matrix A with respect to some basis of V and that $\lambda \in \mathbb{F}$. Prove that λ appears on the diagonal of A precisely dim $E(\lambda, T)$ times.
- **28.** Suppose that $T \in \mathcal{L}(\mathbb{F}^5)$ and dim E(8,T) = 4. Prove that T 2I or T 6I is invertible.
- **29.** Suppose that $T \in \mathcal{L}(V)$ is invertible. Prove that $E(\lambda, T) = E(\frac{1}{\lambda}, T^{-1})$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.