## Math 525 Masters Exam Syllabus

Text: Linear Algebra Done Right, Third Edition, by Sheldon Axler Chapters: 1-3, 5.
Examples of typical homework problems (not an exhaustive list):
Throughout $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$ and $U, V, W$ are vector spaces over $\mathbb{F}$.

1. Let $U_{1}, U_{2}$ be subspaces of $V$. Prove that $U_{1} \cap U_{2}$ is a subspace of $V$.
2. Let $U_{1}, U_{2}$ be subspaces of $V$. Prove that $U_{1} \cup U_{2}$ is a subspace of $V$ if and only if either $U_{1} \subset U_{2}$ or $U_{2} \subset U_{1}$.
3. Prove or give a counterexample: If $U_{1}, U_{2}, W$ are subspaces such that $V=U_{1} \oplus W$ and $V=U_{2} \oplus W$, then $U_{1}=U_{2}$.
4. Let $U$ be the set of all polynomial functions $f$ of the form $f(x)=a+b x+c x^{2}$, where $a, b, c \in \mathbb{F}$. Prove that $U$ is a subspace of $\mathbb{F}[x]$.
5. Prove that if $v_{1}, \ldots, v_{n}$ are linearly independent in $V$, then so is the list $v_{1}-v_{2}, v_{2}-$ $v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}$.
6. Let $W=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a+2 b+3 c=0\right\}$. Prove that $W$ is finite-dimensional by finding a finite spanning set for $W$.
7. Suppose that $V$ is finite-dimensional and $U$ is a subspace of $V$ such that $\operatorname{dim} V=\operatorname{dim} U$. Prove that $U=V$.
8. Prove or disprove: If $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis of $V$ and $U$ is a subspace of $V$ such that $v_{1}, v_{2} \in U$ and $v_{3}, v_{4} \notin U$, then $v_{1}, v_{2}$ is a basis of $U$.
9. Suppose that $V$ is finite dimensional. Prove that if $U_{1}, \ldots, U_{m}$ are subspaces of $V$ such that $V=U_{1} \oplus \ldots \oplus U_{m}$, then $\operatorname{dim} V=\operatorname{dim} U_{1}+\ldots+\operatorname{dim} U_{m}$.
10. Suppose that $V$ is finite-dimensional. If $U, W$ are subspaces with $\operatorname{dim} U+\operatorname{dim} W>$ $\operatorname{dim} V$, prove that $U \cap W \neq\{0\}$.
11. Suppose that $T \in \mathcal{L}(V, W)$ and $v_{1}, \ldots, v_{m}$ is a list of vectors in $V$ such that $T\left(v_{1}\right), \ldots, T\left(v_{m}\right)$ is a linearly independent list in $W$. Prove that $v_{1}, \ldots, v_{m}$ is linearly independent.
12. Suppose that $\operatorname{dim} V=1$. Show that for any $T \in \mathcal{L}(V, V)$ there exists $\lambda \in \mathbb{F}$ such that $T(v)=\lambda v$ for all $v \in V$.
13. Suppose $V$ is finite-dimensional and let $U$ be a subspace of $V$ and $S \in \mathcal{L}(U, W)$. Prove that there exists $T \in \mathcal{L}(V, W)$ such that $T(u)=S(u)$ for all $u \in U$.
14. Let $S, T \in \mathcal{L}(V, V)$ such that range $S \subset$ null $T$. Prove that $(S T)^{2}=0$.
15. Suppose that $T$ is a linear map from $V$ to $\mathbb{F}$. Prove that if $u \in V$ is not in null $T$, then $V=$ null $T \oplus\{a u: a \in F\}$.
16. Prove that if $T \in \mathcal{L}(V, W)$ is injective and $v_{1}, \ldots, v_{n}$ are linearly independent in $V$, then $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent in $W$.
17. Prove that if $T \in \mathcal{L}(V, W)$ is surjective and $v_{1}, \ldots, v_{n}$ span $V$, then $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ span $W$.
18. Suppose that $T \in \mathcal{L}\left(\mathbb{F}^{5}, \mathbb{F}^{3}\right)$ such that null $T=\left\{\left(x_{1}, \ldots, x_{5}\right) \in \mathbb{F}^{5} \mid x_{1}+x_{2}=0\right.$ and $x_{4}=$ $\left.3 x_{5}\right\}$. Prove that $T$ is not surjective.
19. Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that null $S$ and range $S$ are invariant under $T$.
20. Suppose that $T, S \in \mathcal{L}(V)$ and that $S$ is invertible.
(a) Prove that $T$ and $S^{-1} T S$ have the same eigenvalues.
(b) What is the relationship between the eigenvectors of $T$ and the eigenvectors of $S^{-1} T S$ ?
21. Suppose that $T \in \mathcal{L}(V)$ is invertible and $\lambda \in \mathbb{F} \backslash\{0\}$. Prove that $\lambda$ is an eigenvalue of $T$ if and only if $\frac{1}{\lambda}$ is an eigenvalue of $T^{-1}$.
22. Suppose that $V$ is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that $S T$ and $T S$ have the same eigenvalues.
23. Suppose that $S, T \in \mathcal{L}(V)$ and $S$ is invertible. Let $f(x) \in \mathbb{F}[x]$ be a polynomial. Prove that $f\left(S T S^{-1}\right)=S f(T) S^{-1}$.
24. Suppose that $T \in \mathcal{L}(V)$ and $U$ is a subspace of $V$ that is invariant under $T$. Prove that $U$ is invariant under $f(T)$ for all $f(x) \in \mathbb{F}[x]$.
25. Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V=$ null $T \oplus$ range $T$.
26. Suppose $V$ is finite-dimensional, $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues, and $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that $S T=T S$.
27. Suppose $T \in \mathcal{L}(V)$ has a diagonal matrix $A$ with respect to some basis of $V$ and that $\lambda \in \mathbb{F}$. Prove that $\lambda$ appears on the diagonal of $A$ precisely $\operatorname{dim} E(\lambda, T)$ times.
28. Suppose that $T \in \mathcal{L}\left(\mathbb{F}^{5}\right)$ and $\operatorname{dim} E(8, T)=4$. Prove that $T-2 I$ or $T-6 I$ is invertible.
29. Suppose that $T \in \mathcal{L}(V)$ is invertible. Prove that $E(\lambda, T)=E\left(\frac{1}{\lambda}, T^{-1}\right)$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.
