MATH 527 Masters Exam Syllabus

Text: Understanding Analysis, Second Edition, by Stephen Abbott

Coverage: Chapters 1–5, 7.

Examples of typical homework problems (not an exhaustive list):

THIS IS NOT A LIST OF POTENTIAL EXAM QUESTIONS

- 1. Text/1.2.3(c), 1.2.6(d), 1.2.2
- 2. Prove if a is and integer and a^2 is odd, then a itself is odd.
- 3. Prove $\sqrt{6}$ is irrational.
- 4. Prove $\inf(0, 1) = 0$.
- 5. Find the inf and sup of the interval [-1, 2); justify your answer.
- 6. Find the inf and sup of the set $\left\{\frac{1}{n} + n : n \in \mathbb{N}\right\}$; justify your answer.
- 7. Find the inf and sup of $\left\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\right\}$ and justify your answer.
- 8. Text/1.3.2, 1.3.8, 1.3.11, 1.4.1, 1.4.5
- 9. Prove the set

$$A = \left\{ \frac{2n-1}{3n^5 + 5} : n \in \mathbb{N} \right\}$$

is countable.

- 10. A dyadic rational number has the form $n/2^m$, where $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. Decide if the set of dyadic rationals is countable or uncountable and justify your answer.
- 11. Given $n \in \mathbb{N}$ with $n \geq 2$, the Cartesian product of the nonempty sets B_1, B_2, \ldots, B_n is the set

$$B_1 \times \cdots \times B_n = \{(b_{1,\ell_1}, b_{2,\ell_2}, \dots, b_{n,\ell_n}) : b_{k,\ell_k} \in B_k\}.$$

If B_1, B_2, \ldots, B_n are all countable, use induction to prove their Cartesian product is countable. Make sure you spell out your induction clearly.

- 12. Text 2.2.2, 2.3.6, 2.3.7(b)–(e), 2.3.2 (make sure you use the εN definition and *not* a theorem)
- 13. Use the definition of the limit to prove the following.

(a)
$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 + 8}{4n^3 + 9} = \frac{3}{4}$$

(b)
$$\lim_{n \to \infty} \frac{1}{5n^2 - 1} = 0.$$

(c)
$$\lim_{n \to \infty} \frac{1}{6n^2 - 8n + 1} = 0.$$

14. We say a sequence $a_n \to \infty$ if for each M > 0, there exists $N \in \mathbb{N}$ such that

$$n \ge N \Longrightarrow a_n > M.$$

- (a) State the corresponding definition for $a_n \to -\infty$.
- (b) Prove that if $x_n \to \infty$, then (x_n) has a minimum; that is, for some $N \in \mathbb{N}$, $x_n \ge x_N$ for all $n \in \mathbb{N}$.
- 15. Suppose that the sequence (a_n) is increasing and it has a convergent subsequence. Does this imply that (a_n) is convergent? Prove or provide a counterexample.
- 16. Is there any sequence (a_n) which has no convergent subsequence, but $(|a_n|)$ is convergent? Justify your answer.
- 17. Prove that if (a_n) is bounded, and all of its convergent subsequences converge to a, then (a_n) also converges to a.
- 18. Prove or provide a counterexample:
 - (a) If (x_n) Cauchy and (y_n) is bounded, then (x_ny_n) is Cauchy.
 - (b) If (x_n) and (y_n) are Cauchy and $y_n \neq 0$ for all $n \in \mathbb{N}$, then $\frac{x_n}{y_n}$ is Cauchy.
- 19. Give $\varepsilon \delta$ proofs of the following limits.

(a)
$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3$$

(b)
$$\lim_{x \to 3} \frac{x - 4}{x - 2} = -1$$

(c)
$$\lim_{x \to 2} \frac{x^2 + 1}{x - 3} = -5$$

(d)
$$\lim_{x \to 1} \frac{2x - 5}{x - 3} = \frac{3}{2}$$

20. Prove the following limits do not exist.

(a)
$$\lim_{x \to -5} \frac{|x+5|}{x+5}$$

(b)
$$\lim_{x \to 1} \sin \frac{1}{x-1}$$

21. Text 4.2.6bc

22. State the definition of the following.

(a)
$$\lim_{x \to -\infty} f(x) = -\infty$$

(b) $\lim_{x \to a} f(x) = -\infty$

23. Determine the limits (using methods you learned in Calculus I) and then use the definition to prove your answer.

(a)
$$\lim_{x \to \infty} \frac{x^3 + 2}{1 - 2x^3}$$

(b)
$$\lim_{x \to -\infty} \frac{x - 3}{x + 4}$$

(c)
$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 - 3}$$

(d)
$$\lim_{x \to 4^+} \frac{1}{x^2 - 9x + 20}$$

(e)
$$\lim_{x \to \infty} (x - 3x^2)$$

(f)
$$\lim_{x \to \infty} \frac{1}{x^2 - x - 6}$$

- 24. Text 4.2.6(d), 4.3.6(b)(c)(d), 4.3.8(b)
- 25. Give an example of infinite number of closed sets whose union is not closed.
- 26. Define $A \setminus B = \{a \in A : b \notin B\}$. Prove that if A is closed and B is open, then $A \setminus B$ is closed.
- 27. Text 3.2.2, 3.2.4, 3.2.7(a), 3.2.8(c)—justify your answer, 3.2.11, 3.2.13, 3.3.4—justify your answers, 3.4.5,
- 28. Prove that the equation $e^x = 2\cos x + 1$ has at least one solution in \mathbb{R} .
- 29. Prove that if f is continuous on [a, b] with f(x) > 0 for all $x \in [a, b]$, then 1/f is bounded on [a, b].
- 30. Give a short justification for your answer to each of the following questions. When applicable, a sketch will suffice.
 - (a) Is it possible for a continuous function f defined on [0,1] to satisfy f([0,1]) = (0,1)?
 - (b) Is it possible for a continuous function f defined on (0,1) to satisfy f((0,1)) = [0,1]?
- 31. Let $f : [0,1] \to [0,1]$ be continuous. Prove that f has at least one fixed point in [0,1]; that is, there exists $x \in [0,1]$ such that f(x) = x.

HINT: Consider the function g(x) = f(x) - x and apply the Intermediate Value Theorem.

- 32. Prove that the function f(x) = 1/x is not uniformly continuous on (0, 1).
- 33. Suppose $f : A \to \mathbb{R}$ is uniformly continuous on A. Prove that if (x_n) is a Cauchy sequence in A, then $(f(x_n))$ is a Cauchy sequence.
- 34. Show $f(x) = 1/x^2$ is uniformly continuous on $[1, \infty)$, but not on (0, 1).
- 35. Text 5.2.5, 5.2.7, 5.3.1(a), 5.3.3, 5.3.8, 5.3.12

36. Let f(x) = x|x|. Prove that

$$\lim_{h \to 0} \frac{f(h) - 2f(0) + f(-h)}{h^2} = 0$$

but f''(0) does not exist.

- 37. Text 7.2.2ab, 7.2.3, 7.2.7 (HINT: Use the partition P_n where the points are equally spaced 1/n units apart).
- 38. Suppose $f, g : A \to \mathbb{R}$, where A is any nonempty set. For example, A could be a set of real numbers, or A could even be sets of sets (for instance, the set of all partitions of an interval [a, b]). Prove that

$$\sup_{A} (f+g) \le \sup_{A} f + \sup_{A} g \qquad \inf_{A} (f+g) \ge \inf_{A} f + \inf_{A} g$$

•

39. Text 7.5.9