MATH 527 Masters Exam Syllabus

Text: Understanding Analysis, Second Edition, by Stephen Abbott
Coverage: Chapters 1-5, 7 .
Examples of typical homework problems (not an exhaustive list):

THIS IS NOT A LIST OF POTENTIAL EXAM QUESTIONS

1. Text/1.2.3(c), 1.2.6(d), 1.2.2
2. Prove if a is and integer and a^{2} is odd, then a itself is odd.
3. Prove $\sqrt{6}$ is irrational.
4. Prove $\inf (0,1)=0$.
5. Find the inf and sup of the interval $[-1,2)$; justify your answer.
6. Find the inf and sup of the set $\left\{\frac{1}{n}+n: n \in \mathbb{N}\right\}$; justify your answer.
7. Find the inf and sup of $\left\{\frac{1}{n}+(-1)^{n}: n \in \mathbb{N}\right\}$ and justify your answer.
8. Text/1.3.2, 1.3.8, 1.3.11, 1.4.1, 1.4.5
9. Prove the set

$$
A=\left\{\frac{2 n-1}{3 n^{5}+5}: n \in \mathbb{N}\right\}
$$

is countable.
10. A dyadic rational number has the form $n / 2^{m}$, where $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. Decide if the set of dyadic rationals is countable or uncountable and justify your answer.
11. Given $n \in \mathbb{N}$ with $n \geq 2$, the Cartesian product of the nonempty sets $B_{1}, B_{2}, \ldots, B_{n}$ is the set

$$
B_{1} \times \cdots \times B_{n}=\left\{\left(b_{1, \ell_{1}}, b_{2, \ell_{2}}, \ldots, b_{n, \ell_{n}}\right): b_{k, \ell_{k}} \in B_{k}\right\} .
$$

If $B_{1}, B_{2}, \ldots, B_{n}$ are all countable, use induction to prove their Cartesian product is countable. Make sure you spell out your induction clearly.
12. Text 2.2.2, 2.3.6, 2.3.7(b)-(e), 2.3.2 (make sure you use the $\varepsilon-N$ definition and not a theorem)
13. Use the definition of the limit to prove the following.
(a) $\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n^{2}+8}{4 n^{3}+9}=\frac{3}{4}$.
(b) $\lim _{n \rightarrow \infty} \frac{1}{5 n^{2}-1}=0$.
(c) $\lim _{n \rightarrow \infty} \frac{1}{6 n^{2}-8 n+1}=0$.
14. We say a sequence $a_{n} \rightarrow \infty$ if for each $M>0$, there exists $N \in \mathbb{N}$ such that

$$
n \geq N \Longrightarrow a_{n}>M
$$

(a) State the corresponding definition for $a_{n} \rightarrow-\infty$.
(b) Prove that if $x_{n} \rightarrow \infty$, then $\left(x_{n}\right)$ has a minimum; that is, for some $N \in \mathbb{N}$, $x_{n} \geq x_{N}$ for all $n \in \mathbb{N}$.
15. Suppose that the sequence $\left(a_{n}\right)$ is increasing and it has a convergent subsequence. Does this imply that $\left(a_{n}\right)$ is convergent? Prove or provide a counterexample.
16. Is there any sequence $\left(a_{n}\right)$ which has no convergent subsequence, but $\left(\left|a_{n}\right|\right)$ is convergent? Justify your answer.
17. Prove that if $\left(a_{n}\right)$ is bounded, and all of its convergent subsequences converge to a, then $\left(a_{n}\right)$ also converges to a.
18. Prove or provide a counterexample:
(a) If $\left(x_{n}\right)$ Cauchy and $\left(y_{n}\right)$ is bounded, then $\left(x_{n} y_{n}\right)$ is Cauchy.
(b) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\frac{x_{n}}{y_{n}}$ is Cauchy.
19. Give $\varepsilon-\delta$ proofs of the following limits.
(a) $\lim _{x \rightarrow 2}\left(3 x^{2}-5 x+1\right)=3$
(b) $\lim _{x \rightarrow 3} \frac{x-4}{x-2}=-1$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}+1}{x-3}=-5$
(d) $\lim _{x \rightarrow 1} \frac{2 x-5}{x-3}=\frac{3}{2}$
20. Prove the following limits do not exist.
(a) $\lim _{x \rightarrow-5} \frac{|x+5|}{x+5}$
(b) $\lim _{x \rightarrow 1} \sin \frac{1}{x-1}$
21. Text 4.2.6bc
22. State the definition of the following.
(a) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
(b) $\lim _{x \rightarrow a} f(x)=-\infty$
23. Determine the limits (using methods you learned in Calculus I) and then use the definition to prove your answer.
(a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2}{1-2 x^{3}}$
(b) $\lim _{x \rightarrow-\infty} \frac{x-3}{x+4}$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}-3}$
(d) $\lim _{x \rightarrow 4^{+}} \frac{1}{x^{2}-9 x+20}$
(e) $\lim _{x \rightarrow \infty}\left(x-3 x^{2}\right)$
(f) $\lim _{x \rightarrow \infty} \frac{1}{x^{2}-x-6}$
24. Text 4.2.6(d), 4.3.6 (b)(c)(d), 4.3.8(b)
25. Give an example of infinite number of closed sets whose union is not closed.
26. Define $A \backslash B=\{a \in A: b \notin B\}$. Prove that if A is closed and B is open, then $A \backslash B$ is closed.
27. Text 3.2.2, 3.2.4, 3.2.7(a), 3.2.8(c)—justify your answer, 3.2.11, 3.2.13, 3.3.4—justify your answers, 3.4.5,
28. Prove that the equation $e^{x}=2 \cos x+1$ has at least one solution in \mathbb{R}.
29. Prove that if f is continuous on $[a, b]$ with $f(x)>0$ for all $x \in[a, b]$, then $1 / f$ is bounded on $[a, b]$.
30. Give a short justification for your answer to each of the following questions. When applicable, a sketch will suffice.
(a) Is it possible for a continuous function f defined on $[0,1]$ to satisfy $f([0,1])=$ $(0,1) ?$
(b) Is it possible for a continuous function f defined on $(0,1)$ to satisfy $f((0,1))=$ $[0,1]$?
31. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that f has at least one fixed point in $[0,1]$; that is, there exists $x \in[0,1]$ such that $f(x)=x$.

HINT: Consider the function $g(x)=f(x)-x$ and apply the Intermediate Value Theorem.
32. Prove that the function $f(x)=1 / x$ is not uniformly continuous on $(0,1)$.
33. Suppose $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A. Prove that if $\left(x_{n}\right)$ is a Cauchy sequence in A, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
34. Show $f(x)=1 / x^{2}$ is uniformly continuous on $[1, \infty)$, but not on $(0,1)$.
35. Text 5.2.5, 5.2.7, 5.3.1(a), 5.3.3, 5.3.8, 5.3.12
36. Let $f(x)=x|x|$. Prove that

$$
\lim _{h \rightarrow 0} \frac{f(h)-2 f(0)+f(-h)}{h^{2}}=0
$$

but $f^{\prime \prime}(0)$ does not exist.
37. Text 7.2.2ab, 7.2.3, 7.2.7 (HINT: Use the partition P_{n} where the points are equally spaced $1 / n$ units apart).
38. Suppose $f, g: A \rightarrow \mathbb{R}$, where A is any nonempty set. For example, A could be a set of real numbers, or A could even be sets of sets (for instance, the set of all partitions of an interval $[a, b]$). Prove that

$$
\sup _{A}(f+g) \leq \sup _{A} f+\sup _{A} g \quad \inf _{A}(f+g) \geq \inf _{A} f+\inf _{A} g
$$

39. Text 7.5.9
