
BASIC COMPREHENSIVE EXAM IN ALGEBRA

SYLLABUS

The textbook for Math 526 and Math 581 is Abstract Algebra, 3rd Ed, by D. Dummit and R. Foote. The
exam covers Chapters 1, 2, 3 (omit 3.4), 7 (omit 7.5), 8 (omit 8.1), 9 (omit 9.6), 10 (omit 10.4, 10.5), 12
(omit 12.3), 13 (omit 13.3, 13.5, 13.6), 15 (omit 15.4, 15.5).

Here is a list of typical homework problems for Math 526 and 581. This is not a list of potential exam
questions.

(1) Let G be a group and let x, g ∈ G. Prove that |x| = |g−1xg| and deduce that |ab| = |ba| for all
a, b ∈ G.

(2) Let H be a nonempty finite subset of a group G. Show that H is a subgroup if and only if ab ∈ H
for every a, b ∈ H.

(3) Let G be a group such that (ab)i = aibi for three consecutive integers i and all a, b ∈ G. Show that
G is Abelian.

(4) Let G be a finite group and let x ∈ G be an element of order n. Prove that if n is odd, then x = (x2)k

for some integer k ≥ 1.

(5) Let Q8 =

〈(
0 1
−1 0

)
,

(
0 i
i 0

)〉
⊂ GL(2;C), where i2 = −1. Show that |Q8| = 8 = |D4|, but

Q8 6∼= D4. (Q8 is called the quaternion group)
(6) Prove that if σ is the m-cycle (a1 a2 . . . am), then for all i ∈ {1, 2, . . . ,m}, σi(ak) = ak+i, where

k + i is replaced by its least positive residue modulo m. Deduce that |σ| = m.
(7) Let σ be the m-cycle (12 . . .m). Show that σi is also an m-cycle if and only if i is relatively prime

to m.
(8) Let G be a finite group of even order. Prove that G contains an element a 6= e such that a2 = e.
(9) Let G,H be two groups and suppose that ϕ : G→ H is a group isomorphism. Show that |ϕ(x)| = |x|

for every x ∈ G. Explain how this shows that any two isomorphic groups have the same number of
elements of order n ∈ Z+.

(10) Is (9) true (i.e., |ϕ(x)| = |x| for every x ∈ G) if ϕ is only assumed to be a homomorphism? Prove it
is true or give a counterexample.

(11) Let G be any group. Prove that the map from G to itself defined by g 7→ g2 is a homomorphism if
and only if G is Abelian.

(12) Prove that if n 6= m, then Sn and Sm are not isomorphic.

(13) Let G =<

(
0 1
−1 0

)
,

(
0 1
1 0

)
>⊂ GL(2;R). Show that G ' D4.

(14) Let G be a group and let x, y ∈ G with |x| = n and |y| = m. Suppose that x and y commute, i.e.
xy = yx. Prove that |xy| divides the least common multiple of m and n.

(15) Give an example of commuting elements x, y in a group G such that the order of xy is not equal to
the least common multiple of |x| and |y|.

(16) Let G be an Abelian group. Prove that {g ∈ G | |g| < ∞} is a subgroup of G (called the torsion
subgroup of G). Give an explicit example where this set is not a subgroup when G is non-abelian.

(17) Prove that Q×Q is not a cyclic group.
(18) Let H = {σ ∈ Sn | σ(n) = n}. Show that H ≤ Sn and H ∼= Sn−1.
(19) Let G be an Abelian group of order pq, where gcd(p, q) = 1. Assume that there exists a, b ∈ G such

that |a| = p and |b| = q. Show that G is cyclic.
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(20) Let H and K be subgroups of a group G. Show that HK is a subgroup of G if and only if HK = KH.
(21) Prove that if H and K are finite subgroups of a group G whose orders are relatively prime, then

H ∩K = {e}.
(22) Let G be an abelian group and let n be an integer. Show that the set H = {g ∈ G | gn = e} is a

subgroup of G. Give an example to show that H may fail to be a subgroup if G is not abelian.
(23) Let G be a finite group of order n. Let a ∈ G and assume that ak = e for some k < n. Is it true

that k must divide n? Explain by either proving this or giving a counterexample.
(24) Prove that a group that has only a finite number of subgroups is a finite group.
(25) Prove that the subgroup generated by any two distinct elements of order 2 in S3 is all of S3.
(26) Let G be a group, let N be a normal subgroup of G and let G = G/N . Prove that x and y commute

in G if and only if x−1y−1xy ∈ N . [The element x−1y−1xy is called the commutator of x and y and
it is denoted by [x, y].]

(27) Let G be a group. Prove that N = 〈x−1y−1xy | x, y ∈ G〉 is a normal subgroup of G and G/N is
abelian.

(28) Let G be a group such that G/Z(G) is cyclic, where Z(G) = {g ∈ G : gx = xg ∀x ∈ G} is the center
of G. Show that G is abelian.

(29) Let G be a group with order pq, where p, q are primes (not necessarily distinct). Prove that either
G is Abelian or Z(G) = 1.

(30) Let p be a prime number. Show that every group of order p2 is Abelian.
(31) Let G be a finite group, let H be a subgroup of G and let N EG. Prove that if |H| and [G : N ] are

relatively prime then H ≤ N .
(32) Prove that if N is a normal subgroup of a finite group G and gcd(|N |, [G : N ]) = 1 then N is the

unique subgroup of G of order |N |.
(33) Let G be a group and let a, b be elements of finite order m,n, respectively. If ab = ba and 〈a〉∩ 〈b〉 =

{e}, show that the order of ab is lcm(m,n).
(34) Let p be a prime number. Let G be a group of order pn and let H be a normal subgroup of G with

H 6= {e}. Show that H ∩ Z(G) 6= {e}.
(35) Prove that if G is a finite abelian group and p is a prime number such that p divides |G|, then G

has a subgroup of order p. (Hint: Try induction on the order of G. Notice that if H is a proper
nontrivial subgroup of G, then H and G/H are groups of smaller order than G.)

(36) Let p be a prime and let G be a group of order pam, where p does not divide m. Assume P is a
subgroup of G of order pa and N is a normal subgroup of G of order pbn, where p does not divide
n. Prove that |P ∩N | = pb and |PN/N | = pa−b.

(37) Describe the orbit and the stabilizer of a single vertex of the square in the dihedral group D4 viewed
as acting on the square.

(38) Let H be a subgroup of a group G with finite index. Show that there exists a normal subgroup N
of G of finite index contained in H.

(39) Let G be a group acting transitively on a finite set S with |S| > 1. Show that there exists a g ∈ G
such that gx 6= x for every x ∈ S (i.e., g has no fixed point).

(40) Let G be a group of order 105. Prove that G has a normal 5-Sylow subgroup and a normal 7-Sylow
subgroup.

(41) Let G be a group of order 312. Prove that G contains a nontrivial normal subgroup.
(42) Let G be a group of order 231. Prove that Z(G) contains an 11-Sylow subgroup of G and that a

7-Sylow subgroup is normal in G.
(43) Let G be a group of order 351. Prove that G has a normal Sylow p-subgroup for some prime p

dividing 351.
(44) Let G be a finite group.

(a) Prove that elements in the same conjugacy class have conjugate centralizers.
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(b) If c1, . . . , cr are the orders of the centralizers of elements from the distinct conjugacy classes
prove that

1

c1
+ . . .+

1

cr
= 1.

(45) Let H be a proper subgroup of a finite group G. Show that G is not the union of all the conjugates
of H.

(46) Let R be a ring which is finite. Show that R is an integral domain if and only if R is a field.
(47) Let R be a ring and S = M3(R).

(a) Show that there is a one-to-one correspondence between the set of R-ideals I and the set of
S-ideals J given by I 7→ J = {(aij) | aij ∈ I}.

(b) Show that if R is a division ring, then 0 and S are the only S-ideals.
(48) Let R be a commutative ring with identity. An element x ∈ R is called nilpotent if xn = 0 for some

n ∈ Z+. Prove that the set of nilpotent elements, called the nilradical is an ideal in R. This set is
denoted by N (R).

(49) Let R be a commutative ring with identity and let I be an R-ideal. Define

rad(I) = {r ∈ R | rn ∈ I for some n ∈ Z+},

the radical of I. Prove that rad(I) is an ideal containing I and that (rad(I))/I is the nilradical of
the quotient ring R/I, i.e. (rad(I))/I = N (R/I).

(50) Let R be a ring with identity and I1, . . . , In be R-ideals. Show that R = I1+. . .+In with Ij∩
∑
i 6=j

Ii = 0

for every j if and only if 1 = e1 + . . .+ en with Ii = Rei, ei ∈ Z(R), e2i = ei, and eiej = 0 for i 6= j.
[Z(R) = {a ∈ R | ab = ba for all b ∈ R}.]

(51) Let R be a commutative ring with identity and let I1, . . . , In be R-ideals with Ii + Ij = R whenever
i 6= j. Show that I1 ∩ . . . ∩ In = I1 · . . . · In.

(52) Let R = Z[
√
d], where d is not 1 and is not divisible by the square of a prime. Define a function

N , called the norm, from R into the nonnegative integers by N(a + b
√
d) = |a2 − db2|. Verify the

following four properties:
(a) N(x) = 0 if and only if x = 0;
(b) N(xy) = N(x)N(y) for all x, y ∈ R.
(c) x is a unit in R if and only if N(x) = 1;
(d) If N(x) is prime, then x is irreducible in R.

(53) Prove that Z[
√
−3] is not a PID by finding an element of this ring that is irreducible but not prime.

(54) Show that 21 does not factor uniquely in Z[
√
−5] as a product of irreducibles.

(55) Factor the following or prove they are irreducible.
(a) X2 +X + 1 in Z2[X].
(b) X3 +X + 1 in Z3[X].
(c) X4 + 1 in Z5[X].
(d) Xp −X in Zp[X], where p is prime.
(e) X6 + 30X5 − 15X3 + 6X − 120 in Z[X].
(f) X4 + 4X3 + 6X2 + 2X + 1 in Q[X].

(56) Prove that Q(
√

2,
√

3) = {a+b
√

2+c
√

3+d
√

6 : a, b, c, d ∈ Q} = Q(
√

2+
√

3), and find an irreducible

polynomial with coefficients in Q that has
√

2+
√

3 as a root. Be sure to verify that your polynomial
is irreducible.

(57) Find the specified degrees and justify your answer: [Q(2 +
√

3) : Q]. and [Q(1 + 21/3 + 41/3) : Q].
(58) Let K/F be a field extension, and let α ∈ K. Show that if [F (α) : F ] is odd, then F (α) = F (α2).
(59) Prove that if the degree of the field extension K/F is prime, then for every subfield E of K for which

F is a subfield of E, either K = E or E = F .
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(60) Prove that if F is a finite field of characteristic p > 0, then the number of elements in F is pn for
some n > 0.

(61) Show that if E/F and K/E are algebraic extensions, then so is K/F .
(62) For an extension K/F and α, β ∈ K algebraic over F :

(a) Prove [F (α, β) : F ] ≤ [F (α) : F ][F (β) : F ].
(b) Give an example to show that the inequality in (a) can be strict.

(63) Find the minimal polynomial of 1 + i over Q.
(64) Show that if K/F is an algebraic field extension and R is a subring of K such that F is a subring of

R, then R is a field.
(65) Let f(X) = X2 + X − 1 ∈ Z3[X]. Show that f is irreducible and use f to construct a field with 9

elements. Write down the multiplication table for this field and verify that the nonzero elements of
the field form a cyclic group with respect to multiplication.

(66) Verify properties (1) – (10) for Z and I given on p. 659 and p. 661 in the Dummit and Foote
textbook.

(67) Prove that for ideals I and J of a commutative ring,
√
I ∩ J =

√
IJ =

√
I ∩
√
J.

(68) Let K be a field, and let I = (XY, (X − Y )Z) ⊆ K[X,Y, Z]. Prove that
√
I = (XY,XZ, Y Z).

(69) Let I be a proper ideal of a commutative ring. Prove that I is a radical ideal if and only if the
ring R/I has no nonzero nilpotent elements. (An element x of a ring is nilpotent if xn = 0 for some
n > 0.)

(70) Prove that if R is a Noetherian ring, then every proper ideal is an intersection of finitely many
primary ideals, each of which is primary for a different prime ideal of R.

(71) Let Q be a primary ideal of a commutative ring R. Let A,B be ideals, and assume AB ⊆ Q. Assume
that B is finitely generated. Show that A ⊆ Q or there exists some positive integer n such that
Bn ⊆ Q.

(72) Let R be a commutative ring, and let M be a maximal ideal of R. Prove that for n > 0, the ideal
Mn is M -primary. (This is not true in general for non-maximal prime ideals, but you don’t have to
prove it.)

(73) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Prove that

IM = {
∑k
i=1 rimi | k > 0, ri ∈ R,mi ∈M} is an R-submodule of M .

(74) Let M be an R-module, where M is a commutative ring. Show that M is a cyclic R-module if and
only if M ∼= R/I for some ideal I of R.

(75) Let I be an ideal of the commutative ring R, and let {Mα} be a collection of R-modules. For
N = ⊕αMα, show that ⊕αMα/IMα is isomorphic to N/IN as R/I-modules.

(76) Let F1 = ⊕ni=1R and F2 = ⊕mi=1R be free R-modules, where R is a commutative ring. Show that
F1
∼= F2 if and only if n = m. Hint: Use previous problem and some linear algebra.

(77) Let T : R2 → R2 denote the linear transformation that is the projection onto the line y = 2x. List
all F [X]-submodules of R2 (where the F [X]-module structure here is that determined by T ).

(78) Prove that the constant term of the characteristic polynomial of the n×n matrix A is (−1)n det(A).
(79) Prove that the product of eigenvalues of the n× n matrix A is det(A).
(80) Prove that the sum of eigenvalues of the n× n matrix A is the trace of A.
(81) Show that the F [X]-module VT determined by a linear transformation T : V → V is cyclic if and

only if the characteristic polynomial of T is the minimal polynomial of T .
(82) Prove that similar linear transformations of a finite dimensional vector space V have the same

minimal polynomials and the same characteristic polynomials. (Hint: This is easy if you use results
from class.)

(83) Find all possible rational canonical forms of 4× 4 matrices A over R satisfying A3 = I.


