BASIC COMPREHENSIVE EXAM IN ALGEBRA SYLLABUS

The textbook for Math 526 and Math 581 is Abstract Algebra, 3rd Ed, by D. Dummit and R. Foote. The exam covers Chapters 1, 2, 3 (omit 3.4), 7 (omit 7.5), 8 (omit 8.1), 9 (omit 9.6), 10 (omit 10.4, 10.5), 12 (omit 12.3), 13 (omit 13.3, 13.5, 13.6), 15 (omit 15.4, 15.5).

Here is a list of typical homework problems for Math 526 and 581. This is not a list of potential exam questions.
(1) Let G be a group and let $x, g \in G$. Prove that $|x|=\left|g^{-1} x g\right|$ and deduce that $|a b|=|b a|$ for all $a, b \in G$.
(2) Let H be a nonempty finite subset of a group G. Show that H is a subgroup if and only if $a b \in H$ for every $a, b \in H$.
(3) Let G be a group such that $(a b)^{i}=a^{i} b^{i}$ for three consecutive integers i and all $a, b \in G$. Show that G is Abelian.
(4) Let G be a finite group and let $x \in G$ be an element of order n. Prove that if n is odd, then $x=\left(x^{2}\right)^{k}$ for some integer $k \geq 1$.
(5) Let $Q_{8}=\left\langle\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)\right\rangle \subset G L(2 ; \mathbb{C})$, where $i^{2}=-1$. Show that $\left|Q_{8}\right|=8=\left|D_{4}\right|$, but $Q_{8} \not \neq D_{4}$. (Q_{8} is called the quaternion group)
(6) Prove that if σ is the m-cycle $\left(a_{1} a_{2} \ldots a_{m}\right)$, then for all $i \in\{1,2, \ldots, m\}, \sigma^{i}\left(a_{k}\right)=a_{k+i}$, where $k+i$ is replaced by its least positive residue modulo m. Deduce that $|\sigma|=m$.
(7) Let σ be the m-cycle $(12 \ldots m)$. Show that σ^{i} is also an m-cycle if and only if i is relatively prime to m.
(8) Let G be a finite group of even order. Prove that G contains an element $a \neq e$ such that $a^{2}=e$.
(9) Let G, H be two groups and suppose that $\varphi: G \rightarrow H$ is a group isomorphism. Show that $|\varphi(x)|=|x|$ for every $x \in G$. Explain how this shows that any two isomorphic groups have the same number of elements of order $n \in \mathbb{Z}^{+}$.
(10) Is (9) true (i.e., $|\varphi(x)|=|x|$ for every $x \in G$) if φ is only assumed to be a homomorphism? Prove it is true or give a counterexample.
(11) Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{2}$ is a homomorphism if and only if G is Abelian.
(12) Prove that if $n \neq m$, then S_{n} and S_{m} are not isomorphic.
(13) Let $G=<\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\subset G L(2 ; \mathbb{R})$. Show that $G \simeq D_{4}$.
(14) Let G be a group and let $x, y \in G$ with $|x|=n$ and $|y|=m$. Suppose that x and y commute, i.e. $x y=y x$. Prove that $|x y|$ divides the least common multiple of m and n.
(15) Give an example of commuting elements x, y in a group G such that the order of $x y$ is not equal to the least common multiple of $|x|$ and $|y|$.
(16) Let G be an Abelian group. Prove that $\{g \in G||g|<\infty\}$ is a subgroup of G (called the torsion subgroup of G). Give an explicit example where this set is not a subgroup when G is non-abelian.
(17) Prove that $\mathbb{Q} \times \mathbb{Q}$ is not a cyclic group.
(18) Let $H=\left\{\sigma \in S_{n} \mid \sigma(n)=n\right\}$. Show that $H \leq S_{n}$ and $H \cong S_{n-1}$.
(19) Let G be an Abelian group of order $p q$, where $\operatorname{gcd}(p, q)=1$. Assume that there exists $a, b \in G$ such that $|a|=p$ and $|b|=q$. Show that G is cyclic.
(20) Let H and K be subgroups of a group G. Show that $H K$ is a subgroup of G if and only if $H K=K H$.
(21) Prove that if H and K are finite subgroups of a group G whose orders are relatively prime, then $H \cap K=\{e\}$.
(22) Let G be an abelian group and let n be an integer. Show that the set $H=\left\{g \in G \mid g^{n}=e\right\}$ is a subgroup of G. Give an example to show that H may fail to be a subgroup if G is not abelian.
(23) Let G be a finite group of order n. Let $a \in G$ and assume that $a^{k}=e$ for some $k<n$. Is it true that k must divide n ? Explain by either proving this or giving a counterexample.
(24) Prove that a group that has only a finite number of subgroups is a finite group.
(25) Prove that the subgroup generated by any two distinct elements of order 2 in S_{3} is all of S_{3}.
(26) Let G be a group, let N be a normal subgroup of G and let $\bar{G}=G / N$. Prove that \bar{x} and \bar{y} commute in \bar{G} if and only if $x^{-1} y^{-1} x y \in N$. [The element $x^{-1} y^{-1} x y$ is called the commutator of x and y and it is denoted by $[x, y]$.]
(27) Let G be a group. Prove that $N=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle$ is a normal subgroup of G and G / N is abelian.
(28) Let G be a group such that $G / Z(G)$ is cyclic, where $Z(G)=\{g \in G: g x=x g \forall x \in G\}$ is the center of G. Show that G is abelian.
(29) Let G be a group with order $p q$, where p, q are primes (not necessarily distinct). Prove that either G is Abelian or $Z(G)=1$.
(30) Let p be a prime number. Show that every group of order p^{2} is Abelian.
(31) Let G be a finite group, let H be a subgroup of G and let $N \unlhd G$. Prove that if $|H|$ and $[G: N]$ are relatively prime then $H \leq N$.
(32) Prove that if N is a normal subgroup of a finite $\operatorname{group} G$ and $\operatorname{gcd}(|N|,[G: N])=1$ then N is the unique subgroup of G of order $|N|$.
(33) Let G be a group and let a, b be elements of finite order m, n, respectively. If $a b=b a$ and $\langle a\rangle \cap\langle b\rangle=$ $\{e\}$, show that the order of $a b$ is $\operatorname{lcm}(m, n)$.
(34) Let p be a prime number. Let G be a group of order p^{n} and let H be a normal subgroup of G with $H \neq\{e\}$. Show that $H \cap Z(G) \neq\{e\}$.
(35) Prove that if G is a finite abelian group and p is a prime number such that p divides $|G|$, then G has a subgroup of order p. (Hint: Try induction on the order of G. Notice that if H is a proper nontrivial subgroup of G, then H and G / H are groups of smaller order than G.)
(36) Let p be a prime and let G be a group of order $p^{a} m$, where p does not divide m. Assume P is a subgroup of G of order p^{a} and N is a normal subgroup of G of order $p^{b} n$, where p does not divide n. Prove that $|P \cap N|=p^{b}$ and $|P N / N|=p^{a-b}$.
(37) Describe the orbit and the stabilizer of a single vertex of the square in the dihedral group D_{4} viewed as acting on the square.
(38) Let H be a subgroup of a group G with finite index. Show that there exists a normal subgroup N of G of finite index contained in H.
(39) Let G be a group acting transitively on a finite set S with $|S|>1$. Show that there exists a $g \in G$ such that $g x \neq x$ for every $x \in S$ (i.e., g has no fixed point).
(40) Let G be a group of order 105. Prove that G has a normal 5 -Sylow subgroup and a normal 7 -Sylow subgroup.
(41) Let G be a group of order 312. Prove that G contains a nontrivial normal subgroup.
(42) Let G be a group of order 231. Prove that $Z(G)$ contains an 11-Sylow subgroup of G and that a 7-Sylow subgroup is normal in G.
(43) Let G be a group of order 351. Prove that G has a normal Sylow p-subgroup for some prime p dividing 351.
(44) Let G be a finite group.
(a) Prove that elements in the same conjugacy class have conjugate centralizers.
(b) If c_{1}, \ldots, c_{r} are the orders of the centralizers of elements from the distinct conjugacy classes prove that

$$
\frac{1}{c_{1}}+\ldots+\frac{1}{c_{r}}=1
$$

(45) Let H be a proper subgroup of a finite group G. Show that G is not the union of all the conjugates of H.
(46) Let R be a ring which is finite. Show that R is an integral domain if and only if R is a field.
(47) Let R be a ring and $S=M_{3}(R)$.
(a) Show that there is a one-to-one correspondence between the set of R-ideals I and the set of S-ideals J given by $I \mapsto J=\left\{\left(a_{i j}\right) \mid a_{i j} \in I\right\}$.
(b) Show that if R is a division ring, then 0 and S are the only S-ideals.
(48) Let R be a commutative ring with identity. An element $x \in R$ is called nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}^{+}$. Prove that the set of nilpotent elements, called the nilradical is an ideal in R. This set is denoted by $\mathcal{N}(R)$.
(49) Let R be a commutative ring with identity and let I be an R-ideal. Define

$$
\operatorname{rad}(I)=\left\{r \in R \mid r^{n} \in I \text { for some } n \in \mathbb{Z}^{+}\right\}
$$

the radical of I. Prove that $\operatorname{rad}(I)$ is an ideal containing I and that $(\operatorname{rad}(I)) / I$ is the nilradical of the quotient ring R / I, i.e. $(\operatorname{rad}(I)) / I=\mathcal{N}(R / I)$.
(50) Let R be a ring with identity and I_{1}, \ldots, I_{n} be R-ideals. Show that $R=I_{1}+\ldots+I_{n}$ with $I_{j} \cap \sum_{i \neq j} I_{i}=0$ for every j if and only if $1=e_{1}+\ldots+e_{n}$ with $I_{i}=R e_{i}, e_{i} \in Z(R), e_{i}^{2}=e_{i}$, and $e_{i} e_{j}=0$ for $i \neq j$. $[Z(R)=\{a \in R \mid a b=b a$ for all $b \in R\}$.]
(51) Let R be a commutative ring with identity and let I_{1}, \ldots, I_{n} be R-ideals with $I_{i}+I_{j}=R$ whenever $i \neq j$. Show that $I_{1} \cap \ldots \cap I_{n}=I_{1} \cdot \ldots \cdot I_{n}$.
(52) Let $R=\mathbb{Z}[\sqrt{d}]$, where d is not 1 and is not divisible by the square of a prime. Define a function N, called the norm, from R into the nonnegative integers by $N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|$. Verify the following four properties:
(a) $N(x)=0$ if and only if $x=0$;
(b) $N(x y)=N(x) N(y)$ for all $x, y \in R$.
(c) x is a unit in R if and only if $N(x)=1$;
(d) If $N(x)$ is prime, then x is irreducible in R.
(53) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a PID by finding an element of this ring that is irreducible but not prime.
(54) Show that 21 does not factor uniquely in $\mathbb{Z}[\sqrt{-5}]$ as a product of irreducibles.
(55) Factor the following or prove they are irreducible.
(a) $X^{2}+X+1$ in $\mathbb{Z}_{2}[X]$.
(b) $X^{3}+X+1$ in $\mathbb{Z}_{3}[X]$.
(c) $X^{4}+1$ in $\mathbb{Z}_{5}[X]$.
(d) $X^{p}-X$ in $\mathbb{Z}_{p}[X]$, where p is prime.
(e) $X^{6}+30 X^{5}-15 X^{3}+6 X-120$ in $\mathbb{Z}[X]$.
(f) $X^{4}+4 X^{3}+6 X^{2}+2 X+1$ in $\mathbb{Q}[X]$.
(56) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b, c, d \in \mathbb{Q}\}=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, and find an irreducible polynomial with coefficients in \mathbb{Q} that has $\sqrt{2}+\sqrt{3}$ as a root. Be sure to verify that your polynomial is irreducible.
(57) Find the specified degrees and justify your answer: $[\mathbb{Q}(2+\sqrt{3}): \mathbb{Q}]$. and $\left[\mathbb{Q}\left(1+2^{1 / 3}+4^{1 / 3}\right): \mathbb{Q}\right]$.
(58) Let K / F be a field extension, and let $\alpha \in K$. Show that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$.
(59) Prove that if the degree of the field extension K / F is prime, then for every subfield E of K for which F is a subfield of E, either $K=E$ or $E=F$.
(60) Prove that if F is a finite field of characteristic $p>0$, then the number of elements in F is p^{n} for some $n>0$.
(61) Show that if E / F and K / E are algebraic extensions, then so is K / F.
(62) For an extension K / F and $\alpha, \beta \in K$ algebraic over F :
(a) Prove $[F(\alpha, \beta): F] \leq[F(\alpha): F][F(\beta): F]$.
(b) Give an example to show that the inequality in (a) can be strict.
(63) Find the minimal polynomial of $1+i$ over \mathbb{Q}.
(64) Show that if K / F is an algebraic field extension and R is a subring of K such that F is a subring of R, then R is a field.
(65) Let $f(X)=X^{2}+X-1 \in \mathbb{Z}_{3}[X]$. Show that f is irreducible and use f to construct a field with 9 elements. Write down the multiplication table for this field and verify that the nonzero elements of the field form a cyclic group with respect to multiplication.
(66) Verify properties (1) - (10) for \mathcal{Z} and \mathcal{I} given on p. 659 and p. 661 in the Dummit and Foote textbook.
(67) Prove that for ideals I and J of a commutative ring, $\sqrt{I \cap J}=\sqrt{I J}=\sqrt{I} \cap \sqrt{J}$.
(68) Let K be a field, and let $I=(X Y,(X-Y) Z) \subseteq K[X, Y, Z]$. Prove that $\sqrt{I}=(X Y, X Z, Y Z)$.
(69) Let I be a proper ideal of a commutative ring. Prove that I is a radical ideal if and only if the ring R / I has no nonzero nilpotent elements. (An element x of a ring is nilpotent if $x^{n}=0$ for some $n>0$.)
(70) Prove that if R is a Noetherian ring, then every proper ideal is an intersection of finitely many primary ideals, each of which is primary for a different prime ideal of R.
(71) Let Q be a primary ideal of a commutative ring R. Let A, B be ideals, and assume $A B \subseteq Q$. Assume that B is finitely generated. Show that $A \subseteq Q$ or there exists some positive integer n such that $B^{n} \subseteq Q$.
(72) Let R be a commutative ring, and let M be a maximal ideal of R. Prove that for $n>0$, the ideal M^{n} is M-primary. (This is not true in general for non-maximal prime ideals, but you don't have to prove it.)
(73) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Prove that $I M=\left\{\sum_{i=1}^{k} r_{i} m_{i} \mid k>0, r_{i} \in R, m_{i} \in M\right\}$ is an R-submodule of M.
(74) Let M be an R-module, where M is a commutative ring. Show that M is a cyclic R-module if and only if $M \cong R / I$ for some ideal I of R.
(75) Let I be an ideal of the commutative ring R, and let $\left\{M_{\alpha}\right\}$ be a collection of R-modules. For $N=\oplus_{\alpha} M_{\alpha}$, show that $\oplus_{\alpha} M_{\alpha} / I M_{\alpha}$ is isomorphic to $N / I N$ as R / I-modules.
(76) Let $F_{1}=\oplus_{i=1}^{n} R$ and $F_{2}=\oplus_{i=1}^{m} R$ be free R-modules, where R is a commutative ring. Show that $F_{1} \cong F_{2}$ if and only if $n=m$. Hint: Use previous problem and some linear algebra.
(77) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation that is the projection onto the line $y=2 x$. List all $F[X]$-submodules of \mathbb{R}^{2} (where the $F[X]$-module structure here is that determined by T).
(78) Prove that the constant term of the characteristic polynomial of the $n \times n$ matrix A is $(-1)^{n} \operatorname{det}(A)$.
(79) Prove that the product of eigenvalues of the $n \times n$ matrix A is $\operatorname{det}(A)$.
(80) Prove that the sum of eigenvalues of the $n \times n$ matrix A is the trace of A.
(81) Show that the $F[X]$-module V_{T} determined by a linear transformation $T: V \rightarrow V$ is cyclic if and only if the characteristic polynomial of T is the minimal polynomial of T.
(82) Prove that similar linear transformations of a finite dimensional vector space V have the same minimal polynomials and the same characteristic polynomials. (Hint: This is easy if you use results from class.)
(83) Find all possible rational canonical forms of 4×4 matrices A over \mathbb{R} satisfying $A^{3}=I$.

