NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 7

Fall 2023

Problem 7

Prove that for some integer $k>1,3^{k}$ ends with 0001 (in its decimal representation).

Solution: Consider the infinite collection $\left\{3^{k} \bmod 10000: k \geq 1\right\}$ of all possible last 4 digits of 3^{k}. Since there are only finitely many possibilities, we must have some $m>n>1$ such that 3^{m} and 3^{n} have the same last 4 digits. In other words,

$$
3^{m}=3^{n} \bmod 10000
$$

Because 3^{n} and 10000 are coprime, we can cancel the 3^{n} to reach

$$
3^{m-n}=1 \quad \bmod 10000
$$

The number $k=m-n>1$ satisfies 3^{k} ends with 0001 in its decimal representation.

