NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 1

Fall 2023

Problem 1

Suppose $\triangle \mathrm{ABC}$ is a triangle with sides of length $|\mathrm{AB}|=10,|\mathrm{BC}|=6$, and $|\mathrm{AC}|=8$. Find the length of the segment $A F$ so that the area of $\triangle A F C$ is twice that of triangle $\triangle F B C$. Justify your answer.

Solution. Area of a triangle is given by $\frac{1}{2} \times$ base \times height. Note that $\Delta \mathrm{AFC}$ and $\Delta \mathrm{FBC}$ have the same height. Therefore, in order for $\triangle \mathrm{AFC}$ tohave double the area of $\triangle \mathrm{FBC}$, the length of the base of $\triangle \mathrm{AFC}$, which is $|\mathrm{AF}|$, must double the base of $\triangle \mathrm{FBC}$, which is $|\mathrm{FB}|$. In other words,

$$
|\mathrm{AF}|=2|\mathrm{FB}| .
$$

But we also know $|\mathrm{AF}|+|\mathrm{FB}|=10$. Thus

$$
\begin{aligned}
&|\mathrm{AF}|+|\mathrm{FB}|=10 \\
& 2|\mathrm{FB}|+|\mathrm{FB}|=10 \\
& 3|\mathrm{FB}|=10 \\
&|\mathrm{FB}|=\frac{10}{3}
\end{aligned}
$$

Therefore the length of AF equals $2|\mathrm{FB}|=\frac{20}{3}$.

