NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 1

Fall 2023

Problem 1

Suppose ΔABC is a triangle with sides of length |AB|=10, |BC|=6, and |AC|=8. Find the length of the segment AF so that the area of ΔAFC is twice that of triangle ΔFBC . Justify your answer.

Solution. Area of a triangle is given by $\frac{1}{2} \times \mathsf{base} \times \mathsf{height}$. Note that $\Delta \mathsf{AFC}$ and $\Delta \mathsf{FBC}$ have the same height. Therefore, in order for $\Delta \mathsf{AFC}$ tohave double the area of $\Delta \mathsf{FBC}$, the length of the base of $\Delta \mathsf{AFC}$, which is $|\mathsf{AF}|$, must double the base of $\Delta \mathsf{FBC}$, which is $|\mathsf{FB}|$. In other words,

$$|AF| = 2|FB|.$$

But we also know |AF| + |FB| = 10. Thus

$$|AF| + |FB| = 10$$

 $2|FB| + |FB| = 10$
 $3|FB| = 10$
 $|FB| = \frac{10}{3}$.

Therefore the length of AF equals $2|FB| = \frac{20}{3}$.