NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 2

Spring 2024

Problem 2

The square $A B C D$ has side-length 8 . Inside, the line $B E$ is tangent to the semi-circle. Find the length of $B E$ and justify your answer.

Solution 1: Let G be the point where the line $B E$ intersects the semicircle and draw a line $E F$ that is parallel to $C D$.

Notice that $E G$ and $E C$ are both tangent to the semicircle, and thus $E G=E C$. Similarly, $B G=B D=8$ as they are both tangent to the semicircle as well.

Denote $E C=x$. We have that $E G=E C=x$ and thus $B E=8+x, F D=x$ and thus $B F=B D-F D=8-x$, and finally, $E F=8$. Applying the Pythagorean theorem on the triangle $\triangle B E F$, we have

$$
(8+x)^{2}=B E^{2}=E F^{2}+B F^{2}=8^{2}+(8-x)^{2} .
$$

Expanding both sides,

$$
8^{2}+16 x+x^{2}=8^{2}+8^{2}-16 x+x^{2}
$$

This simplifies to

$$
32 x=64, x=2
$$

Therefore, $B E=8+x=10$.

Solution 2: We let the the center of the semicircle be O and let $B E$ tangent the semicircle at G.

Again, we observe that $E G=E C$ and $B G=B D$ since they are tangent to the semicircle. Moreover, $O G \perp B E, O C \perp E C, O D \perp B D$. Therefore, $\triangle E G O$ is congruent to $\triangle E C O$ and $\triangle B G O$ is congruent to $\triangle B D O$.

We have that $\angle G O E=\angle C O E$ and $\angle B O G=\angle B O D=90^{\circ}-\angle O B G$. Notice also that

$$
180^{\circ}=\angle G O E+\angle C O E+\angle B O G+\angle B O D=2 \times(\angle G O E+\angle B O G) .
$$

Therefore, $\angle G O E=90^{\circ}-\angle B O G=\angle O B G$. This implies that the right-angled triangle $\triangle G O E$ is similar to the right-angled triangle $\triangle G B O$. Therefore,

$$
\frac{E G}{G O}=\frac{G O}{B G}
$$

Notice that $B G=B D=8$ and $G O=O C=O D=4$ is the radius of the semi-circle. Therefore, $E G=2$ and thus $B E=E G+G B=10$.

