# NMSU MATH PROBLEM OF THE WEEK 

## Solution to Problem 3

Spring 2024

## Problem 3

Find all real numbers $x, y$ such that $x^{2}=8 x+y$ and $y^{2}=8 y+x$.

Solution: Taking the difference of these two equations, we have

$$
x^{2}-y^{2}=8 x+y-(8 y+x)=7(x-y) .
$$

Factor the left-hand side as $x^{2}-y^{2}=(x-y)(x+y)$, we have that

$$
(x-y)(x+y)=7(x-y)
$$

We have to be careful when we try to cancel out the $x-y$ factor. There are two cases:
Case 1. $x-y \neq 0$ : we have $x+y=7$ and therefore $y=7-x$. Replacing it into the first equation, we have

$$
x^{2}=8 x+(7-x)=7 x+7 .
$$

Solving these equations gives $x=\frac{7 \pm \sqrt{7^{2}+28}}{2}=\frac{7 \pm \sqrt{77}}{2}$. Using $y=7-x$, we have 2 sets of solutions:

$$
\left\{\begin{array} { l } 
{ x = \frac { 7 + \sqrt { 7 7 } } { 2 } } \\
{ y = \frac { 7 - \sqrt { 7 7 } } { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x=\frac{7-\sqrt{77}}{2} \\
y=\frac{7+\sqrt{77}}{2}
\end{array}\right.\right.
$$

Case 2. $x-y=0$ : we have $x=y$ so that $x^{2}=9 x$ and thus $x=0$ or 9 . In this case, we have two other sets of solutions:

$$
\left\{\begin{array} { l } 
{ x = 0 } \\
{ y = 0 }
\end{array} \quad \left\{\begin{array}{l}
x=9 \\
y=9
\end{array}\right.\right.
$$

