NMSU MATH PROBLEM OF THE WEEK

$$
\begin{aligned}
& \qquad \begin{array}{c}
\text { Solution to Problem 4 } \\
\text { Spring } 2024
\end{array} \\
& \hline \text { Problem } 4 \\
& \text { How many consecutive zeros does } 2024 \text { ! have at the } \\
& \text { right end of its decimal expansion? Here, } \\
& \qquad 2024 \text { ! }=2024 \times 2023 \times \cdots \times 2 \times 1 \\
& \text { Justify your answer. }
\end{aligned}
$$

Solution: First of all, given any integer n, the number of consecutive zeros at the right end of its decimal expansion is the largest integer k such that n is divisible by 10^{k} but not 10^{k+1}. To find such a number, it suffices to find the prime factorization of n as

$$
n=2^{n_{2}} \times 5^{n_{5}} \times m
$$

where m is not a multiple of 2 or 5 . From here, the number of consecutive zeros at the right end of its decimal expansion is precisely $k=\min \left\{n_{2}, n_{5}\right\}$.

Therefore, to solve our question, it suffices to know the powers of 2 and 5 in the prime factorization of 2024!. We first claim that

$$
n_{2}=\sum_{k \geq 1}\left\lfloor\frac{2024}{2^{k}}\right\rfloor=\left\lfloor\frac{2024}{2}\right\rfloor+\left\lfloor\frac{2024}{4}\right\rfloor+\cdots+\left\lfloor\frac{2024}{1024}\right\rfloor
$$

Here, $\lfloor x\rfloor$ is the integer part of x. To see this formula: each even number between 1 and 2024 contributed a factor of 2 in the product 2024!. There are precisely $\left\lfloor\frac{2024}{2}\right\rfloor$ even numbers between 1 and 2024. Among these even numbers, there are precisely $\left\lfloor\frac{2024}{4}\right\rfloor$ of them being a multiple of 4. Each of these numbers will contribute at least another factor of 2 . Among these multiples of 4 , there are $\left\lfloor\frac{2024}{8}\right\rfloor$ of them being a multiple of 8 , which contributes another factor of 2 . Repeat this process, and we get the total number of 2 s in the product of 2024 ! is given by the desired formula. Another way to illustrate this formula is by considering the factor of 2 in each even number:

$$
\begin{aligned}
2 & =2 \\
4 & =2 \times 2 \\
6 & =2 \times 3 \\
8 & =2 \times 2 \times 2 \\
10 & =2 \times 5 \\
12 & =2 \times 2 \times 3
\end{aligned}
$$

$$
14=2 \times 7
$$

The total number of 2 s in the list is given by

$$
n_{2}=\left\lfloor\frac{2024}{2}\right\rfloor+\left\lfloor\frac{2024}{4}\right\rfloor+\left\lfloor\frac{2024}{8}\right\rfloor+\ldots
$$

One can compute this number explicitly as

$$
n_{2}=1012+506+253+126+63+31+15+7+3+1=2017
$$

Using the same logic, we can know the power of 5 in the prime factorization of 2024 ! is given by

$$
n_{5}=\sum_{k \geq 1}\left\lfloor\frac{2024}{5^{k}}\right\rfloor
$$

We can compute it explicitly as

$$
\begin{aligned}
n_{5} & =\left\lfloor\frac{2024}{5}\right\rfloor+\left\lfloor\frac{2024}{25}\right\rfloor+\left\lfloor\frac{2024}{125}\right\rfloor+\left\lfloor\frac{2024}{625}\right\rfloor \\
& =404+80+16+3=503
\end{aligned}
$$

Therefore,

$$
2024!=2^{2017} \times 5^{503} \times m=10^{503} \times m^{\prime},
$$

where m has is not a multiple of 2 or 5 and $m^{\prime}=2^{1514} m$ is not a multiple of 10 . This tells us that there are 503 zeros at the right end of its decimal expansion of 2024!.

