NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 4

Spring 2024

Problem 5

Suppose four positive integers a, b, c, d satisfies

$$
\begin{aligned}
& a b+c d=38 \\
& a c+b d=34 \\
& a d+b c=43
\end{aligned}
$$

Find all possible a, b, c, d. Justify your answer.

Solution: First we observe that by adding the first two equations, we get

$$
a b+c d+a c+b d=38+34=72 .
$$

The left-hand side can be factored, so we get

$$
72=a(b+c)+d(b+c)=(a+d)(b+c) .
$$

Exploring this idea, we can add any pair of these equations and get:

$$
\begin{array}{ll}
(a+d)(b+c)=72, & \text { by adding equation }(1) \text { and (2), } \\
(a+b)(c+d)=77, & \text { by adding equation (2) and (3), } \\
(a+c)(b+d)=81, & \text { by adding equation (1) and (3), }
\end{array}
$$

Now notice that a, b, c, d are positive integers, so that each of $a+b, a+c, a+d, b+c, b+d, c+d$ is also an integer of at least 2 . Now $(a+b)(c+d)=77=7 \times 11$ is a product of two primes. The only way this factorization works is when $\{a+b, c+d\}$ is $\{7,11\}$.

There are several different ways to proceed (for example, one can discuss the cases when $a+b$ is 7 or 11 separately, and reduce the equations in two variables). We shall show one of the simpler ways from here. Let us first observe that regardless of whether $a+b=7$ or 11 (and $c+d=11$ or 7), we always have that $a+b+c+d=7+11=18$. Now $81=(a+c)(b+d)$ is factored as a product of two positive integers $(a+c)$ and $(b+d)$, whose sum is $(a+c)+(b+d)=18$. There is only one way to factor 81 as a product of two positive integers such that their sum is 18 , which is using $81=9 \times 9$. Therefore, we have $a+c=b+d=9$.

Now if we subtract equation (3) from (1), we have:

$$
(a b+c d)-(a d+b c)=-5
$$

The left-hand side can be factored:

$$
-5=a(b-d)-c(b-d)=(a-c)(b-d) .
$$

Here, $a-c$ and $b-d$ are integers (possibly negative). There are 4 different possibilities:

$$
\left\{\begin{array} { l }
{ a - c = 1 } \\
{ b - d = - 5 }
\end{array} \quad \left\{\begin{array} { l }
{ a - c = - 1 } \\
{ b - d = 5 }
\end{array} \quad \left\{\begin{array} { l }
{ a - c = 5 } \\
{ b - d = - 1 }
\end{array} \quad \left\{\begin{array}{l}
a-c=-5 \\
b-d=1
\end{array}\right.\right.\right.\right.
$$

Together with $a+c=b+d=9$, we have 4 solutions corresponding to each of these 4 possibilities:

$$
\left\{\begin{array} { l }
{ a = 5 } \\
{ b = 2 } \\
{ c = 4 } \\
{ d = 7 }
\end{array} \left\{\begin{array} { l }
{ a = 4 } \\
{ b = 7 } \\
{ c = 5 } \\
{ d = 2 }
\end{array} \quad \left\{\begin{array} { l }
{ a = 7 } \\
{ b = 4 } \\
{ c = 2 } \\
{ d = 5 }
\end{array} \quad \left\{\begin{array}{l}
a=2 \\
b=5 \\
c=7 \\
d=4
\end{array}\right.\right.\right.\right.
$$

One can easily verify that all these solutions indeed satisfy the original equations.

