NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 7

Spring 2024

Problem 7

How many ways can we pick two non-empty subsets $A, B \subset\{1,2, \ldots, n\}$ where $A \cap B=\emptyset$? Simplify and justify your answer.

Solution 1: First of all, to construct (potentially empty) A, B with $A \cap B=\emptyset$, it is the same as the following procedure: for each $i \in\{1,2, \ldots, n\}$, we decide for the element i to be: (1) in A only, (2) in B only, (3) in neither A, B. There are precisely 3^{n} of such choices, each corresponding to some choice of A, B with $A \cap B=\emptyset$.

However, among these, A or B may be the empty set. Since we are only looking for non-empty A, B, we must exclude these possibilities.

When $A=\emptyset, B$ can be any subset of $\{1,2, \ldots, n\}$, which has 2^{n} choices. Similarly, when $B=\emptyset, A$ has 2^{n} choices. In total, we have $2 \times 2^{n}-1$ scenarios where either A or B is empty. Here, we must subtract 1 to avoid double counting the case where $A=B=\emptyset$.

Therefore, the total number of ways to write non-empty A, B with $A \cap B=\emptyset$ is precisely $3^{n}-2 \times 2^{n}+1$.
Solution 2: Since A and B are non-empty, the number of elements in A is some integer k with $1 \leq k \leq n-1$.

Let us consider the case when A has exactly k elements. The number of ways to choose k elements from n elements is given by the binomial coefficient $\binom{n}{k}$, which is the number of choices for A. Once A is fixed, we need to pick a non-empty set B from the remaining $n-k$ elements. There are precisely $2^{n-k}-1$ choices for non-empty B. Therefore, there are $\binom{n}{k} \times\left(2^{n-k}-1\right)$ possibilities.

In total, the number of choices becomes

$$
\begin{equation*}
C=\sum_{k=1}^{n-1}\binom{n}{k} \times\left(2^{n-k}-1\right) \tag{*}
\end{equation*}
$$

To simplify this summation, we turn to the binomial expansion:

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Notice that $\binom{n}{k}=\binom{n}{n-k}$ so that this can also be written as

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k}=x^{n}+\sum_{k=1}^{n-1}\binom{n}{k} x^{n-k}+1
$$

Plugging in $x=1$ and 2 yields:

$$
2^{n}=1+\sum_{k=1}^{n-1}\binom{n}{k}+1, \quad \text { for } x=1
$$

and,

$$
3^{n}=2^{n}+\sum_{k=1}^{n-1}\binom{n}{k} 2^{k}+1, \quad \text { for } x=2
$$

Substitute into equation $\left({ }^{*}\right)$, we get

$$
C=\sum_{k=1}^{n-1}\binom{n}{k} 2^{k}-\sum_{k=1}^{n-1}\binom{n}{k}=\left(3^{n}-2^{n}-1\right)-\left(2^{n}-2\right)=3^{n}-2 \times 2^{n}+1
$$

