NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 8 Spring 2024

Problem 8

Prove that for any *n* integers a_1, a_2, \ldots, a_n , we can always find some consecutive terms $a_i, a_{i+1}, \ldots, a_{i+k}$ $(k \ge 0)$ that add up to a multiple of *n*. Note that a single term a_i is also considered as "consecutive terms".

Solution: Let us consider the following partial sums:

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n$.

If any of these s_k is a multiple of n, then we have a sum of k consecutive terms that add up to a multiple of n.

Otherwise, the remainder of s_1, s_2, \ldots, s_n module n can only be one of $1, 2, \ldots, n-1$, a total of n-1 choices. Since we have a total of n numbers here, we must have some indices i < j such that s_i and s_j have the same remainder when divided by n. In this case, $s_j - s_i = a_{i+1} + \cdots + a_j$ is a sum of some consecutive term that is a multiple of n.