NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 8

Spring 2024

Problem 8

Prove that for any n integers $a_{1}, a_{2}, \ldots, a_{n}$, we can always find some consecutive terms $a_{i}, a_{i+1}, \ldots, a_{i+k}$ ($k \geq 0$) that add up to a multiple of n. Note that a single term a_{i} is also considered as "consecutive terms".

Solution: Let us consider the following partial sums:

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} .
\end{aligned}
$$

If any of these s_{k} is a multiple of n, then we have a sum of k consecutive terms that add up to a multiple of n.

Otherwise, the remainder of $s_{1}, s_{2}, \ldots, s_{n}$ module n can only be one of $1,2, \ldots, n-1$, a total of $n-1$ choices. Since we have a total of n numbers here, we must have some indices $i<j$ such that s_{i} and s_{j} have the same remainder when divided by n. In this case, $s_{j}-s_{i}=a_{i+1}+\cdots+a_{j}$ is a sum of some consecutive term that is a multiple of n.

