NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 6

Spring 2023

Problem 6

Consider a sequence of points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \ldots$ in a plane such that $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are not on a straight line, and for every $n \geq 4, \mathrm{P}_{n}$ is the midpoint of P_{n-3} and P_{n-2}. Show that P_{9} always lies on the line joining P_{1} and P_{5}.

Solution. Suppose $\mathrm{A}=\left(a_{1}, a_{2}\right)$ and $\mathrm{B}=\left(b_{1}, b_{2}\right)$ are points in a plain then any point on the line joining A and B can be expressed as

$$
(1-\mathrm{t}) \mathrm{A}+\mathrm{tB}:=\left(\left((1-\mathrm{t}) a_{1}+\mathrm{t} b_{1},(1-\mathrm{t}) a_{2}+\mathrm{t} b_{2}\right),\right.
$$

for some real number t. In particular, when $t=0$ we are at A, when $t=1$ we are at B, and at $\mathrm{t}=\frac{1}{2}$ we are at the midpoint of A and B . Using this notation, the given condition is

$$
\mathrm{P}_{n}=\frac{\mathrm{P}_{n-2}+\mathrm{P}_{n-3}}{2}
$$

for $n \geq 4$. Thus,

$$
\begin{aligned}
\mathrm{P}_{9} & =\frac{\mathrm{P}_{7}+\mathrm{P}_{6}}{2} \\
& =\frac{\frac{\mathrm{P}_{5}+\mathrm{P}_{4}}{2}+\frac{\mathrm{P}_{4}+\mathrm{P}_{3}}{2}}{2} \\
& =\frac{\frac{\mathrm{P}_{5}+\mathrm{P}_{3}}{2}+\mathrm{P}_{4}}{2} \\
& =\frac{\mathrm{P}_{5}+\mathrm{P}_{3}+2 \mathrm{P}_{4}}{4} \\
& =\frac{\mathrm{P}_{5}+\mathrm{P}_{3}+\mathrm{P}_{1}+\mathrm{P}_{2}}{4} \\
& =\frac{\mathrm{P}_{5}+\mathrm{P}_{1}+\left(\mathrm{P}_{3}+\mathrm{P}_{2}\right)}{4} \\
& =\frac{\mathrm{P}_{5}+\mathrm{P}_{1}+2 \mathrm{P}_{5}}{4}=\frac{3}{4} \mathrm{P}_{5}+\frac{1}{4} \mathrm{P}_{1}
\end{aligned}
$$

is a point on the line joining P_{1} and P_{5}.

