NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 6

Spring 2023

Problem 6

Let $f : \mathbb{Z}^+ \longrightarrow \mathbb{Z}^+$ be a map between positive integers such that it is strictly increasing (i.e. f(x+1) > f(x)) and

f(f(x)) = 3x

for all positive integers x. Find n for which f(n) = 56. Justify your answer.

Solution. Since f(f(1)) = 3, we conclude f(1) cannot equal 1 because, otherwise, it leads to a contradiction 1 = f(1) = f(f(1)) = 3. Thus, f(1) > 1, as any positive number other than 1 is greater than 1. Because f is monotonically increasing we have f(1) < f(f(1)) = 3. Thus f(1) = 2, and the given formula f(f(x)) = 3x implies

$$f(n) = \begin{cases} 2 \cdot 3^k & \text{if } n = 3^k \\ 3^{k+1} & \text{if } x = 2 \cdot 3^k \end{cases}$$

as shown in the table

n	1	2	3	4	5	6	7	8	9		18	
f(n)	2	3	6	?	?	9	?	?	18	?	27	

Because of the strictly increasing condition, we notice that

which forces f(4) = 7 and f(5) = 8 as well as

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	 18	
f(n)	2	3	6	7	8	9	12	15	18	?	?	21	?	?	24	27	

The monotonicity of f means 18 < f(10) < f(11) < 21 and 21 < f(13) < f(14) < 24 which forces f(10) = 19, f(11) = 20, f(13) = 22 and f(14) = 23. Continuing this way, we check

$$f(29) = 56,$$

thus n = 29.