NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 6
Spring 2023

Problem 6

Let $f: \mathbb{Z}^{+} \longrightarrow \mathbb{Z}^{+}$be a map between positive integers such that it is strictly increasing (i.e. $f(x+1)>f(x))$ and

$$
f(f(x))=3 x
$$

for all positive integers x. Find n for which $f(n)=56$. Justify your answer.

Solution. Since $f(f(1))=3$, we conclude $f(1)$ cannot equal 1 because, otherwise, it leads to a contradiction $1=f(1)=f(f(1))=3$. Thus, $f(1)>1$, as any positive number other than 1 is greater than 1 . Because f is monotonically increasing we have $f(1)<f(f(1))=3$. Thus $f(1)=2$, and the given formula $f(f(x))=3 x$ implies

$$
f(n)=\left\{\begin{array}{cc}
2 \cdot 3^{k} & \text { if } n=3^{k} \\
3^{k+1} & \text { if } x=2 \cdot 3^{k}
\end{array}\right.
$$

as shown in the table

n	1	2	3	4	5	6	7	8	9	\ldots	18	\ldots
$f(n)$	2	3	6	$?$	$?$	9	$?$	$?$	18	$?$	27	\ldots

Because of the strictly increasing condition, we notice that

$$
6<f(4)<f(5)<9
$$

which forces $f(4)=7$ and $f(5)=8$ as well as

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots	18	\ldots
$f(n)$	2	3	6	7	8	9	12	15	18	$?$	$?$	21	$?$	$?$	24		27	\ldots

The monotonicity of f means $18<f(10)<f(11)<21$ and $21<f(13)<f(14)<24$ which forces $f(10)=19, f(11)=20, f(13)=22$ and $f(14)=23$. Continuing this way, we check

$$
f(29)=56,
$$

thus $n=29$.

