NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 8

Spring 2023

Problem 8

Fermat's little theorem. If a is an integer coprime to n then

 $a^{\varphi(n)} \equiv 1 \mod n,$

where $\varphi(n)$ is the Euler's totient function.

Use the result above to identify $3^{2023^{2023}} \mod 7$.

Solution. The Euler totient function $\varphi(n)$ equals the number of positive integers k less than n for which gcd(n,k) = 1. For example,

$$\varphi(2) = 1, \quad \varphi(6) = \#\{1,5\} = 2, \quad \varphi(7) = \#\{1,2,3,4,5,6\} = 6,$$

so on and so forth.

When we set a = 3 and n = 7, Fermat's little theorem implies $3^6 \equiv 1 \mod 7$. Thus, we need to identify

 $2023^{2023} \mod 6$

in order to get the answer. Here we are relying on the general formula

$$a^k \mod n = a^{k \mod \varphi(n)} \mod n$$

which is a direct consequence of Fermat's little theorem. Using this formula iteratively, we get

$$3^{2023^{2023}} \mod 7 = 3^{2023^{2023} \mod \varphi(7)} \mod 7$$

= $3^{2023^{2023} \mod 6} \mod 7$
= $3^{2023^{(2023 \mod \varphi(6))} \mod 6} \mod 7$
= $3^{2023^{(2023 \mod 2)} \mod 6} \mod 7$
= $3^{2023^1 \mod 6} \mod 7$
= $3^1 \mod 7$
= $3.$

1