NMSU MATH PROBLEM OF THE WEEK

Solution to Problem 8
Spring 2023

Problem 8

Fermat's little theorem. If a is an integer coprime to n then

$$
a^{\varphi(n)} \equiv 1 \quad \bmod n,
$$

where $\varphi(n)$ is the Euler's totient function.

Solution. The Euler totient function $\varphi(n)$ equals the number of positive integers k less than n for which $\operatorname{gcd}(n, k)=1$. For example,

$$
\varphi(2)=1, \quad \varphi(6)=\#\{1,5\}=2, \quad \varphi(7)=\#\{1,2,3,4,5,6\}=6,
$$

so on and so forth.
When we set $a=3$ and $n=7$, Fermat's little theorem implies $3^{6} \equiv 1 \bmod 7$. Thus, we need to identify

$$
2023^{2023} \bmod 6
$$

in order to get the answer. Here we are relying on the general formula

$$
a^{k} \bmod n=a^{k \bmod \varphi(n)} \bmod n
$$

which is a direct consequence of Fermat's little theorem. Using this formula iteratively, we get

$$
\begin{aligned}
3^{2023^{2023}} \bmod 7 & =3^{2023^{2023} \bmod \varphi(7)} \bmod 7 \\
& =3^{2023^{2023} \bmod 6} \bmod 7 \\
& =3^{2023^{(2023 \bmod \varphi(6))} \bmod 6} \bmod 7 \\
& =3^{\left.2023^{(2023} \bmod 2\right)} \bmod 6 \bmod 7 \\
& =3^{2023^{1} \bmod 6 \bmod 7} \\
& =3^{1} \bmod 7 \\
& =3
\end{aligned}
$$

