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Formulation of the problem. A neuron transforms the inputs x1, . . . , xn into a value yk(x1, . . . , xn) =

s

(
n∑

i=1

wki · xi − wk0

)
for some coefficients wki, where s(z) is a nonlinear continuous function known as an

activation function.
One of the main advantages of biological neural networks is high parallelism: e.g., when we look, millions

of neurons simultaneously process different parts of the image. In such heavily parallel system, the processing
time is proportional to the number of computational stages. It is known that already for one stage – when

signals go into nonlinear neurons, and then a linear combination y(x1, . . . , xn) =
K∑

k=1

Wk ·yk(x1, . . . , xn)−W0

of neurons’ results is returned – has the universal approximation property: for every continuous function
f(x1, . . . , xn) on a bounded domain (|xi| ≤ B for all i) and for every desired accuracy ε > 0, there exist
weights wki and Wk for which the resulting value y(x1, . . . , xn) is ε-close to f(x1, . . . , xn) for all xi; [1, 2].

Since one stage is the fastest, and with one stage, we can, in principle, represent any dependence, why do
we need multi-stage (“deep”) neural networks? But empirically, we do need them: many machine learning
problem could not solved with traditional (“shallow”) networks, but were successfully solved by deep ones [2].
Why?

A possible explanation. Computational devices are never absolutely accurate – e.g., due to rounding. So,
we can only implement an activation function approximately, with some accuracy δ > 0. So, all we know
that the actual neurons apply some function s̃(z) which is δ-close to s(z).

It is known that every continuous function on a bounded domain can be approximated, with any given
accuracy, by a polynomial – this is, by the way, how all special functions like exp(x), sin(x), etc. are
computed in a computer, by computing the corresponding approximating polynomial. So, it is possible that
neurons use a polynomial function s̃(z). Let d be the order of this polynomial, i.e., the largest overall degree
of its terms. Then, in a traditional neural network, all the outputs yk(x1, . . . , xn) are polynomials of order
d, and thus, their linear combination y(x1, . . . , xn) is also a polynomial of order d – and polynomials of fixed
order are not universal approximators.

So, we need more than one non-linear layer. What if we have two non-linear layers, so that outputs yk of
the first later serve as inputs to the second one? In this case, the resulting function is obtained by applying
a polynomial of degree d to polynomials of degree d – resulting in a polynomial of degree d2 – thus also not a
universal approximator. For any fixed number L of layers, we will get polynomials of degree bounded by dL.

Thus, in this realistic setting, to get the universal approximation property, we cannot limit the number
of layers – and this is what deep networks are about.
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