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Formulation of the problem. In many real-life situations, we need to make a decision. The quality
of the decision usually depends on the value of some quantity x. For example, in construction, the speed
with which the cement hardens depends on the humidity, and thus, the proportions of the best cement mix
depend on the humidity.

In practice, we often do not know the exact value of the corresponding quantity. For example, in the
case of the pavement, while we can accurate measure the current humidity, what is really important is the
humidity in the next few hours. For this future value, at best, we only know the bounds, i.e., we only know
the interval [x, x] that contains the actual (unknown) value x. To select a decision, we need to select some
value x0 from this interval. Which value should be select?

Our solution. In such situations of interval uncertainty, the ideal case is when the selected value x0 is
exactly equal to the actual value x. When these two values differ, i.e., when x < x0 or x > x0, the situation
becomes worse. In both cases when x < x0 and when x > x0, we have losses, but we often have two different
reasons for a loss. For example, if the humidity will be larger than expected, the hardening of the cement
will take longer and we will lose time (and thus, money). In contrast, if the humidity is lower than expected,
the cement will harden too fast, and the pavement will not be as stiff as it could be – so we will not get
a premium for a good quality road (and we may even be required to repave some road segments). In both
cases, the larger the difference |x− x0|, the larger the loss.

The interval [x, x] is usually reasonable narrow, so the difference is small. In this case, the dependence
of the loss on the difference can be well approximated by a linear expression. So, when x < x0, the loss is
α− · (x0−x) for some α−, and when x > x0, the loss is α+ · (x−x0) for some α+. In the first case, the worst-
case loss is when x is the smallest: α− ·(x0−x); in the second case, the worst-case loss is when x is the largest:
α+ ·(x−x0). In general, the worst-case loss is the largest of these two: w(x0) = max(α− ·(x0−x), α+ ·(x−x0)).
The best-case loss is 0 – when we guessed the value x correctly.

In this case, all we know is that the loss is somewhere between 0 and w(x0), i.e., the gain is somewhere
between g = −w(x0) and g = 0. In such situations, decision theory (see, e.g., [1]) recommends to use
Hurwicz optimism-pessimism criterion, i.e.. to select some value α > 0 and then to select an alternative for

which the value g
def
= α · g + (1− α) · g is the largest possible. In our case, g = −α · w(x0), so maximizing g

simply means selecting the value x0 for which w(x0) is the smallest.
Here, the value α− · (x0 − x) increases with x0, while the value α+ · (x − x0) decreases with x0. Thus,

the function w(x0) – which is the minimum of these two expressions – decreases until the point x̃ at which
these two expressions coincide, and then increases. So, the minimum of the worst-case loss w(x0) is attained
at the point x̃ for which α− · (x̃ − x) = α+ · (x − x̃), i.e., for x̃ = α̃ · x + (1 − α̃) · x, where we denoted

α̃
def
= α+/(α+ + α−).

Comment. Interestingly, we get the same expression as with the Hurwicz criterion!

References

[1] R. D. Luce and R. Raiffa, Games and Decisions: Introduction and Critical Survey, Dover, New York,
1989.


