How to Make a Decision under Interval Uncertainty If We Do Not Know the Utility Function

Jeffrey Escamilla and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA
jescamilla2@miners.utep.edu, vladik@utep.edu

Formulation of the problem. According to decision theory, decisions of a rational person are described by a function $u(a)$ called utility: an alternative in which we gain amount a is better than the alternative in which we gain amount b if and only if $u(a)>u(b)$. For the case of gain, the utility function is (non-strictly) increasing: if $a \leq b$ then $u(a) \leq u(b)$.

In practice, we only know the consequence of each action with uncertainty. In many cases, all we know is the bounds on possible gain, i.e., the interval $[\underline{a}, \bar{a}]$ of possible values of the gain.

In this case, according to decision theory, the decision maker should select some value $\alpha \in[0,1]$ describing the decision maker's degree of optimism-pessimism - and select an alternative for which the value $\alpha \cdot u(\bar{a})+$ $(1-\alpha) \cdot u(\underline{a})$ is the largest.

Sometimes, we do not know the utility function. When can we still conclude that $[\underline{a}, \bar{a}]$ is better than $[\underline{b}, \bar{b}]$? The answer is easy when $\alpha=1$ - then we select the alternative with the larger $\bar{a}-$ and when $\alpha=0-$ then we select the alternative with the larger \underline{a}. But what if $0<\alpha<1$?

Main result. For every $\alpha \in(0,1)$ and for every two intervals $[\underline{a}, \bar{a}]$ and $[\underline{b}, \bar{b}]$, the following two conditions are equivalent:

1. $\alpha \cdot u(\bar{a})+(1-\alpha) \cdot u(\underline{a}) \geq \alpha \cdot u(\bar{b})+(1-\alpha) \cdot u(\underline{b})$ for all non-strictly increasing functions $u(a)$;
2. $\underline{a} \geq \underline{b}$ and $\bar{a} \geq \bar{b}$.

Proof. Condition 2. implies condition 1. due to monotonicity. Let us prove that if the condition 2. is not satisfied, i.e., if $\underline{a}<\underline{b}$ or $\bar{a}<\bar{b}$, then the condition 1. is violated for some increasing function $u(a)$.

Indeed, if $\underline{a}<\underline{b}$, then we can take $u(a)=0$ for $a \leq \underline{a}$ and $u(a)=1$ otherwise. Then, since $\bar{b} \geq \underline{b}>\underline{a}$, the right-hand side of the inequality 1 . is equal to $\alpha+(1-\alpha)=1$, while the left-hand side is equal to $\alpha \cdot u(\bar{a}) \leq \alpha<1-$ so the inequality is not satisfied.

If $\bar{a}<\bar{b}$, then we can take $u(a)=0$ for $a<\bar{b}$ and $u(a)=1$ otherwise. Then, since $\underline{a} \leq \bar{a}<\bar{b}$, the left-hand side of 1 . is equal to 0 , while the right-hand side is larger than or equal to $(1-\alpha) \cdot \bar{u}(\bar{b})=1-\alpha>0$, so the inequality is not satisfied either. The result is proven.

Comment. We considered the case when we know α and but we do not know $u(a)$. Similar results can be proven in two other cases:

- when we know $u(a)$ - which is strictly increasing - but we do not know α;
- when we do not know neither α nor $u(a)$.

For example, when we do not know α, then we can have $\alpha=0$ and $\alpha=1$ - in which case we also have $\underline{a} \geq \underline{b}$ and $\bar{a} \geq \bar{b}$.

