Finite Fields - A Possible Way to Avoid Infinities in Physical Computations

David Sanchez and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso
500 W. UNiversity, El Paso, TX 79968, USA
dasanchez13@miners.utep.edu, vladik@utep.edu

Infinities in p hysics: a p roblem. While modern physics has many successes, there are still many cases when known equations leads to meaningless infinite values for physical q uantities. For example, if we compute the overall energy of an electron - including the energy $E=m_{0} \cdot c^{2}$ corresponding to its mass m_{0} and the energy the electron's electromagnetic field - we get infinity.

There are tricks - called renormaliztaion - that enables physicists to avoid infinities: e.g., we can assume that m_{0} is close to $-\infty$ and tend to a limit. However, it is desirable to avoid infinities without adding special tricks.

Finite fields: a p ossible a pproach. Many physical quantities are d iscrete. For example, e lectric charge can only be proportional to the electron's charge - i.e., is described by an integer. For charges, addition makes physical systems: when we bring two objects together, their charges add. However, it does not necessarily mean that we need to consider infinities: for e xample, for a n e lectric m eter, o nce the number reaches a certain threshold, it turns back to 0 . In general, for any prime number p, remainders modulo p with the usual addition-modulo- p and multiplication-modulo- p operations form what in mathematics is called a finite field, wi th us ual re lation be tween ad dition and multiplication and with the possibility of di viding by any non-zero number. The set of all such remainders is usually denoted by $Z / p Z=\{0,1, \ldots, p-1\}$.

What we do in this talk. In this talk, we analyze how this idea affects the usual commonsense division of numbers into small (S), medium (M), and large (L). For example, we can consider all values <0.1 as small, all values >10 as large, and all others as medium.

In general, commonsense implies that if x is small, then $1 / x$ is large, and vice versa. For a usual real line, no matter what thresholds we choose, some numbers are so large that they cannot be represented as a product of two small or medium numbers: in the above example, such is any number larger than 100 . Interestingly, in the finite field case, this conclusion is no longer valid.

Proposition. Suppose that $Z / p Z$ is divided into three disjoint sets S, M, and L, for which, for every x, $x \in S$ if and only if $1 / x \in L$. Then, every element $x \in L$ can be represented as a product $x=a \cdot b$ of two numbers $a, b \in S \cup M$.

Proof. Number 1 cannot be small, since then we would have $1 / 1=1 \in L$ but $S \cap L=\emptyset$. Similarly, 1 cannot be large, so $1 \in M$. So, $\leq p-1$ elements are small or large. Small and large numbers are in 1-1 correspondence via $x \mapsto 1 / x$, and a number cannot be both small and large, so the number of large numbers is $\leq(p-1) / 2$. Thus, the number of small or medium numbers is at least $p-(p-1) / 2=(p+1) / 2$.

Let us take any large number ℓ and let us consider ratios ℓ / x for all $x \in S \cup M$. There are $\geq(p+1) / 2$ numbers in $S \cup M$, so we will have $\geq(p+1) / 2$ different r atios. These ratios cannot be all large, since there are $\leq(p-1) / 2$ large numbers. Thus, at least of these ratios ℓ / x_{0} is in $S \cup M$. For this ratio, we have the desired representation $\ell=x_{0} \cdot\left(\ell / x_{0}\right)$.

