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Formulation of the problem. Computers usually use the same number of bits to store all real numbers:
64 bits, which is 8 bytes. This length potentially enables us to represent real numbers with relative precision
up to 2−64, which is approximately 10−19. In some cases, we do need this precision – and sometimes, we
even need double precision corresponding to 128 bits. However, in many practical situations, we process
measurement results that are measured with precision 1% or even less. In such cases, we do not need that
many bits, so additional bits are simply wasted. It is therefore reasonable to consider number representations
with varying number of bits. Such representations have indeed been proposed; see, e.g., [1]. This leads to
several questions. The first question is: how much space do we save? On the one hand, we need fewer bits to
store each number; on the other hand, we will need to store, for each number, information about its length
– which also takes a few bits.

The second question is related to the fact that in a computer, bits are usually organized into bytes.
From this viewpoint, it is easier to design a computer in which real numbers can use 1, 2, etc. bytes than
to allow also any number of bits, including the number of bits that does not divide by 8 and thus, does
not constitute several bytes. The bit-representation complication may be worth it, if it allows us to save a
significant portion of memory. So, the second question is: how much memory do we save if we use bits and
not bytes?

How we can answer these questions. Strictly speaking, to answer these questions, we need to know how
frequently we encounter numbers of different length. At present, this information is not available. In such
situations, it makes sense to use what is called Laplace Indeterminacy Principle: since we have no reason to
believe that some lengths are more frequent than others, it makes sense to assume that all possible lengths
are equally frequent. Let us use this assumption to answer both questions.

Case of byte representation. In the byte representation, a number can occupy 1, 2, . . . , 8 bytes. Each

of these cases has the same probability 1/8, so the average length is equal to
1 + 2 + . . .+ 8

8
= 4.5 bytes =

36 bits. In addition, to store information about the length, we need 3 bits – since with 3 bits, we can describe
23 = 8 different values of length. So overall, we need 36+3 = 39 bits. This is much smaller than the current
64 bits – about 40% smaller. So, the answer to the first question is: yes, this is worth pursuing.

Case of bit representation. In the bit representation, a number can occupy 1, 2, . . . , 64 bits. Each of

these cases has the same probability 1/64, so the average length is equal to
1 + 2 + . . .+ 64

= 32.5 bits. In
64

addition, to store information about the length, we need 6 bits – since with 6 bits, we can describe 26 = 64
different values o f l ength. S o o verall, we n eed 32.5 + 6  =  3 8.5 b its. The d ifference be tween th is average 
length and 39 bits corresponding to byte representation is very small – about 1%, so the answer to the 
second question is: no, it is probably not worth doing.

[1] J. F. Gustafson, The End of Error: Unum Computing, Chapman & Hall/CRC, Boca Raton, FL, 2015.

 


