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Attention as a way to better classification. In many practical situations, we have several objects, each
of which is characterized by vector xi = (xi,1, . . . , xi,N ) consisting of this object’s numerical characteristics.
For example, we have many picture of pets, and you want to classify them into cats and dogs. One of the
difficulties is that objects within each class are different: e.g., dogs can be large and small, of different breeds,
etc. To make classification task easier, it is desirable to replace each specific vector xi with a weighted average
yi =

∑
j wij · xj of all the objects xj which are similar to xi. This way, the role of individual characteristics

will diminish, and the classification task will become easier.
A natural way to describe the closeness between the objects xi and xj is to use the usual metric

d(a, b) =
√∑

k(ak − bk)2. The smaller this distance, the larger should be the weight, so we must have
wij ∼ f(d(xi, xj)) for some decreasing function f(v). The sum of the weights should be equal to 1, so we
must have wij = f(d(xi, xj))/ (

∑
ℓ f(d(xi, xℓ)). This expression can be simplified if we take into account

that overall, the values xij are reasonably random, in which case the value x2
i =

∑
k x

2
i,k is close to some

constant C (N time average of x2
i,j). Then, d2(xi, xj) = x2

i + x2
j − 2xi · xj ≈ 2C − 2xi · xj . So, a de-

creasing function of d(xi, xj) can be described as an increasing function of the dot product xi · xj . Thus,
wij = F (xi · xj)/ (

∑
ℓ F (xi · xℓ)).

Empirical evidence shows that out of all increasing functions F (v), functions F (v) = exp(α · v) work the
best. How can we explain this empirical fact?

Our explanation is based on the fact that measurements are noisy. So, a natural requirement is that the
resulting values yi should be affected by the noise as little as possible. If we replace the original values xi,j

with noisy values x̃i,k = xi,k + ni,k for some noise ni,k with 0 mean, then the dot product x̃i · x̃j becomes
xi ·xj +xi ·ni+ni ·xj +ni ·nj . The expected value of terms xi ·nj is 0, so the only non-zero addition to the
dot product is E[ni · nj ]. For local noise, this expected value is 0, but if the noise had a global component
with mean square value m, then, on average, all dot products are increased by the same constant m.

So, we want to find the function F (v) for which adding a constant m to all dot product would not

change the weights. In particular, for two objects, this means that
F (a+m)

F (a+m) + F (b+m)
=

F (a)

F (a) + F (b)
for all a, b, and m. If we apply 1/z to both sides of this equality and subtract 1 from both sides, we get
F (b + m)/F (a + m) = F (b)/F (a). Multiplying both sides by F (a + m)/F (b), we get F (b + m)/F (b) =
F (a+m)/F (a) for all a and b, i.e., that the ratio F (a+m)/F (a) does not depend on a, it only depends on
m: F (a +m)/F (a) = g(m) for some function g(m). Thus, F (a +m) = g(m) · F (a). It is known that the
only increasing solution to this functional equation is F (a) = c · exp(α · a) which is, from the viewpoint of
the weights wi,j , equivalent to F (a) = exp(α · a). This is exactly what we needed to explain.

(To solve the functional equation, differentiate both sides bym and takem = 0. Then F ′(a) = g′(0)·F (a),

with α
def
= g′(0), i.e., dF/da = α · F and dF/F = α · da. Integrating, we get ln(F ) = α · a + const, so

F (a) = const · exp(α · a).)


