
Why Skew-Normal Distributions and How They Are Related to

ReLU Activation Function in Deep Learning

Damian Lorenzo Gallegas Espinosa, Olga Kosheleva, and Vladik Kreinovich
University of Texas at El Paso, El Paso, TX 79968, USA

dlgallegose@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Why skew-normal distributions: a challenge. In many practical situation, we have many small inde-
pendent factors affecting the desired quantity. In such cases, according to the Central Limit Theorem, the
resulting distribution is close to Gaussian (normal). It is known that the result of a linear function applied to
a normal random variable – or, more generally, a linear combination of independent normal random variables
– is still normal.

However, not all distributions are normal: e.g., many empirical distributions are skewed (asymmetric),
i.e., have non-zero third central moment. It is desirable to have a few-parametric generalization of the
class of normal distributions that would allow to consider skewness. Many such generalizations are possible.
Empirically, one of them – called skew-normal – has been most successful. If we denote the probability
density function (pdf) of the basic normal distrubution, with 0 mean and standard deviation 1 by f(x) and
the corresponding cumulative distribution function by F (x), then the pdf s(x) of skew-normal distrubution
has the form s(x) = f(x) ·F (α ·x) for some α. How can we explain why this particular generalization turned
out ot be the most successful?

Our explanation. We need a non-normal distribution. We already have a normal distribution, so a natural
idea is to apply some function to the normal random variable. This does not restrict the class of distributions,
since all continuous distributions can be obtained from each other by applying some function – this is, by
the way, a usual way to simulate different distributions. Since applying a linear function will still keep it
normal, let us apply a nonlinear function.

From the practical viewpoint, the faster-to-compute this nonlinear function, the better. So what is the
fastest-to-compute nonlinear function? In the computer, the fastest possible operation is unary minus (it
changes just one bit) and min and max (that require, on average, 2 bit operations). We can also have
constants like 0. Addition and subtraction require as many bit operations as there are bits – i.e., 64 on
most computers, and multiplication and division require even more bit operations. So, the fastest way is to
compute min or max of x and −x, i.e., to compute |x| or −|x|. (It would be even faster to take max(0, x), but
this would not lead to a continuous random variable.) Interestingly, if add |x| to the set, i.e., if we consider
linear combinations of |x| (for a normal random variable x) and independent normal random variables, then
we get exactly all skew-normal distributions.

How is this related to ReLU? In a neural network, we have several units (called neurons) that perform
some transformations. Some neurons process inputs, others process results of the previous neurons, etc. If all
neurons were linear, then we would only get linear functions, and many real-life dependencies are nonlinear.
Thus, to be able to describe real-life dependencies, we need to add some nonlinear transformations. Similarly
to the skew-normal case, we are looking for the fastest-to-compute transformations. The more inputs, the
longer time is takes to process them, so the fastest are functions of one variable. Similar to the above, we
conclude that the fastest-to-compute functions are max(x, 0) (or, which is equivalent from the viewpoint of
further linear transformations, min(0, x) which is equal to −max(0,−x)). This is exactly the transformation
provided by Rectied Linear (ReLU) neurons – neurons that turned out to be most effective in machine
learning.

