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Formulation of the problem. Classification methods are often not perfect. In addition to true positive
(TP ) and true negative (TN) cases, we also have false positive (FP ) and false negative (FN) cases. To gauge
the quality of a classification method, we need to take into account the numbers of all these four categories.
In principle, we can have many different combinations of these four numbers. Empirically, the following
three combinations are most frequently used: precision P = TP/(TP + FP ), recall R = TP/(TP + FN),
and accuracy A = (TP +TN)/(TP +TN +FP +FN) – and well as their combination F1 = P ·R/(P +R).
A natural question is: why these characteristics and not others?

Towards an explanation. Each correct classification brings benefits, each false classification brings losses.
The method should be applied if the benefits are larger than the losses. With respect to benefits, sometimes,
benefits bTP and bTN of TP and TN are similar, and sometimes, one of them brings more benefits: e.g.,
detecting cancer may save a life, while correctly identifying a non-cancerous tumor simply saves a patient
from a few further procedures. In principle, we could have three cases: bTP ≈ bTN , bTP ≫ bTN , and
bTN ≫ bTP . If TN brings more benefits, we can simply rename negative to positive, so we have two cases:
bTP ≈ bTN and bTP ≫ bTN . In the first approximation, when we ignore small numbers and small differences,
the first case means bTP = bTN , and the second means bTP > 0 and bTN = 0. Similarly for losses, in the
first approximation, we can consider three possible cases: the case when ℓFP = ℓFN , the case when ℓFP > 0
and ℓFN = 0, and the case when ℓFN > 0 and ℓFP = 0.

Let us first consider the case when bTP > 0, bTN = 0, ℓFP > 0 and ℓFN = 0. In this case, the method is

beneficial if bTP ·TP > ℓFP ·FP , i.e., equivalently, when r1
def
= TP/FP > ℓFP /bTP . The larger the ratio r1,

the more cases when this method is useful. So, the quality of the method is larger if the ratio r1 is larger.
Alternatively, we can take any strictly increasing function of r1, e.g., 1/(1 + 1/r1). Applying this function
to r1 = TP/FP , we get exactly the precision – which explains why precision is used.

In the case when bTP > 0, bTN = 0, ℓFN > 0, and ℓFP = 0, a similar argument leads to recall. In the
case when bTP = bTN and ℓFP = ℓFN , a similar argument leads to accuracy.

Why only three? For general values of benefits and losses, the method is effective if bTP ·TP+bTN ·TN >
ℓFP ·FP + ℓFN ·FN . If we divide both sides by TP , we get an equivalent inequality bTP + bTN ·TN/TP >

ℓFP ·FP/TP+ℓFN ·FN/TP with three unknown ratios R1
def
= FP/TP , R2

def
= FN/TP , and R3

def
= TN/TP .

One can check that, by dividing both the numerator and the denominator of the expressions for P , R, and
A by TP , that these three values depend only on these three ratios: P = 1/(1 + R1), R = 1/(1 + R2),
and A = (1 + R3)/(1 + R1 + R2 + R3). Thus, when we know the values of P , R, and A, we have 3
equations from which we can determine all three unknown ratios: R1 = 1/P − 1, R2 = 1/A − 1, and
R3 = (A · (R1 + R2 + 1) − 1)/(1 − A). Hence, once we know P , R, and A, we will be able to predict, for
each combination of benefits and losses, whether this method is applicable. So, the three characteristics are
indeed sufficient – all other characteristics can be described in terms of these three, just like F1 can be.


