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Part 1. Introducing the world of the enumeration degrees:
basic definitions and structural properties.



Motivation

When we define computable functions on N, we naturally include partial
functions.

When we define relative computation using Turing reducibility, there is a
mismatch: an oracle Turing machine is only well defined for total oracles, but
produces partial functions.

Question
How do we extend relative computability so that it makes sense when the
oracle is partial?
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Attempt 1: Partial reducibility

The following notion was explored by Sasso and Skordev in the 1960-1970s:

Definition
Partial reducibility is the notion we get when we postulate that if during a
computation the oracle is queried at an undefined value, the computation does
not halt.

Example (Myhill 1961)
If f is partially computable from φ and g is any extension of φ then f is
partially computable from g.

Hence this reducibility fails to capture the intuition that if we can enumerate
A⊕A then we can compute A. Consider:

φ(x) = cA⊕A(x) =

{
1, if x ∈ A⊕A;
↑, o.w.

and its extension g(x) = 1.
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The definition of enumeration reducibility

Myhill suggested introducing non-determinism into the formalization of
relative computability.

Definition (Friedberg, Rogers 1959; Uspensky)
A ≤e B if there is a c.e. set Γ so that

x ∈ A if and only if (∃v)[⟨x, v⟩ ∈ Γ & Dv ⊆ B].

Myhill’s definition of when φ is reducible to ψ is equivalent to Gφ ≤e Gψ.

Every c.e. set can be thought of as inducing an operator on sets: an
enumeration operator.
We write A = Γ(B) to denote that A ≤e B via Γ.
The elements of an enumeration operator are called axioms.
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An alternative view of enumeration reducibility

The relation “c.e. in” is not transitive, so it is not a reducibility. Selman
explored transitive relations that imply “c.e. in”.

Definition (Selman 1971)
AS1B if and only if for every Turing oracle X we have that if B is c.e. in X
then A is c.e. in X .

Note, that A ≤e B implies AS1B: if A = Γ(B) and X can enumerate B then
can X enumerates A via the following procedure:

Start listing the elements of Γ: ⟨x1, D1⟩, ⟨x2, D2⟩, ...
At the same time start listing B: b1, b2, ...
If you see all elements in Di listed among b1, b2, ... then output xi.

So there is a uniform procedure for transforming an enumeration of B to an
enumeration of A independent of the oracle X .
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Selman’s theorem

Theorem (Selman 1972, Case 1974)
A ≤e B if and only if whenever B is X-c.e., A is also X-c.e.

Proof.
Suppose A ≰e B. We build an enumeration of B that does compute an
enumeration of A. Any A-generic enumeration of B will do!

We build f =
⋃
s σs, where σs ∈ B<ω and σs ⪯ σs+1.

At stage s we have σs and we ensure that W f
s ̸= A.

Find x ∈ ω and τ ∈ B<ω such that x ∈W τ
s ∖A and τ ⪰ σs and let

σs+1 = τ . If no such x and τ exists then σs+1 = σs.

If A =W f
s then A ≤e B via

Γ = {⟨x,D⟩ | ∃τ ⪰ σs(x ∈W τ
s & D = ran(τ))}.
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The Turing degrees and the enumeration degrees

Definition
Let ≤ be either ≤T or ≤e.

1 A ≡ B if and only if A ≤ B and B ≤ A.
2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two upper semi-lattices:
1 The Turing degrees DT with least element 0T consisting of all

computable sets.
2 The enumeration degrees De with least element 0e consisting of all c.e.

sets.
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What connects DT and De

Proposition

A ≤T B ⇔ A and A are c.e. in B ⇔ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, and the least upper bound.

T = ι(DT ) is the set of total enumeration degrees. A set A is total if A ≤e A.

(DT ,≤T ,0T ) ∼= (T ,≤e,0e) ⊆ (De,≤e,0e)

On the other hand by Selman’s theorem A ≤e B if and only if the total
degrees above de(A) contain the total degrees above de(B).
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Non-total degrees exist

The total degrees are small both in terms of measure and category.

Definition
A set X is quasiminimal if and only if X is not c.e. and whenever T ≤e X is
total we have that T is computable.

Recall that a set G is n-generic if for every Σ0
n set W ⊆ 2<ω there is an initial

segment of G that is either in W or has no extension in W .

Theorem (Case 1974)
Every 1-generic set is quasiminimal.

A set R is n-random if and only if it is not in the intersection of any
effectively null sequence of Σ0

n classes.

Theorem (Cholak, Miller, Soskova)
There are total 1-random sets, but every 2-random set is quasiminimal.
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Case’s proof

G is 1-generic if for every Σ0
1 set W ⊆ 2<ω there is an initial segment of G

that is either in W or has no extension in W .

Theorem (Case 1974)
Every 1-generic set is quasiminimal.

Proof.
Suppose that Γ(G) = T ⊕ T is total.

Let W = {σ ∈ 2<ω | (∃n)[2n, 2n+ 1 ∈ Γ(σ)]}.

There must be some τ ⪯ G with no extension in W .

To compute T (n) search for σ ⪰ τ so that either 2n or 2n+ 1 ∈ Γ(σ).

There must be at least one such σ ⪯ G.

If σ1, σ2 ⪰ τ are such that 2n ∈ Γ(σ1) and 2n+ 1 ∈ Γ(σ2) then
2n, 2n+ 1 ∈ Γ(σ) where σ = σ1 ∪ σ2.
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Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.
2 They have uncountable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De is downwards dense.
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Downwards density of De

Theorem (Gutteridge 1971)
There is an enumeration operator Θ so that if A ≰e ∅′ then ∅ <e Θ(A) <e A.

Proof.

We build a c.e. set T ⊆ ω × ω.

The n-th column of T is a finite
initial segment of ω ending in bn.

Θ(A) is the interior of T plus the
bn where n ∈ A.

So A is computable from
Θ(A)⊕ ∅′.
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Downwards density of De

Theorem (Gutteridge 1971)
There is an enumeration operator Θ so that if A ≰e ∅′ then ∅ <e Θ(A) <e A.

Proof.

We build T so that whether
n ∈ Γ(Θ(A)) depends only on the
columns that are smaller than n.

So if A = Γ(Θ(A)) then A is c.e.

So Θ(A) <e A.
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The local structure of the enumeration degrees

Definition
The local structure De(≤ 0′e) is the initial interval of all degrees bounded by
0e

′ = de(∅′). These are the enumeration degrees of Σ0
2 sets.

Theorem (Cooper)
De(≤ 0′e) is dense.

Proof.
A Σ0

2 set can be approximated by a computable sequence of finite sets
{As}s<ω so that n ∈ A if and only if n ∈ As at all but finitely many s and so
that there are infinitely many good stages s such that As ⊆ A.

Given B <e A, we build Θ so that B <e Θ(A)⊕B <e A.

At stage s we only add axioms of the form ⟨x,As⟩ to Θ.
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Deeper density results

Theorem (Slaman, Sorbi 2014)
There is no initial segment of the enumeration degrees that is linearly ordered.

Definition (Lachlan, Shore 1992)
A set A has a good approximation if there is a computable sequence of finite
sets {As}s<ω so that

1 There are infinitely many good stages s such that As ⊆ A.
2 For all n the limit over good stages s of As(n) exists and is A(n).

Example

Every Σ0
2 set has a good approximation. So does every set of the form X ⊕X .

Theorem (Lachlan, Shore 1992)
If B <e A and A has a good approximation then there is an B <e X <e A.
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Empty intervals of degrees

Theorem (Lachlan, Shore 1992)
There is a Π0

2 set without a good approximation.

Slaman and Calhoun proved that there are empty intervals of Π0
2 enumeration

degrees.

Theorem (Kent, Lewis-Pye, and Sorbi 2012)

There is a Π0
2 enumeration degree that is a strong minimal cover.

Here a is a strong minimal cover of b if every x < a is also below b.

The proof is a sophisticated priority construction using the fact that A is Π0
2 if

and only if it has an approximation {As}s<ω so that n ∈ A if and only if there
are infinitely many s so that n ∈ As.
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Strong embeddings

Definition
Let L be a finite lattice with least element 0L and largest element 1L. We say
that L strongly embeds into the enumeration degrees if there is an order
preserving function f : L → De so that if a = f(0L) and b = f(1L) then the
interval [a,b] is isomorphic to L and for any degree x < b such that x is not
in the range of f we have that x ≤ a.

Theorem (Lempp, Slaman, Soskova 2021)

Every finite distributive lattice has a strong embedding into the Π0
2

enumeration degrees.
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The existential fragment of the theory of De and De(≤ 0e
′)

Consider an existential statement in the language of partial orders:

(∃x1, x2, . . . xn)[. . . xi ≤ xj ∧ xk ≰ xm . . . ].

To understand the Σ1-theory of De or De(≤ 0e
′) we need to understand what

finite partial orders can be embedded into the structure.

We know that DT embeds in De and so all finite partial orders do.

Corollary
The Σ1-theory of De and De(≤ 0′e) is decidable.

Question
What about the Σn-theory for n ≥ 2?
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Transfering undecidability

Definition
Let C be a class of structures in a finite relational language
L = {R1, . . . , Rn}. We say that C is Σk-elementarily definable with
parameters in D if there are Σk-formulas φU , φRi , and φ¬Ri for i ≤ n such
that for every C ∈ C, there are parameters p⃗ ∈ D that make the structure with
universe U = {x| De |= φU (x, p⃗)} and relations defined by φRi , φ¬Ri

isomorphic to C.

Lemma (Nies 1996)
Let r ≥ 2 and k ≥ 1. If a class of models C is Σk-elementarily definable in D
with parameters and the Πr+1-theory of C is (hereditarily) undecidable, then
the Πr+k-theory of D is (hereditarily) undecidable.
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Undecidability of the Π3-theory

Examples
1 The Π3-theory of finite distributive lattices in the language of partial

orders.
2 The Σ2-theory of finite bipartite graphs in the language with no equality

but one binary edge relation symbol E and unary predicates for the two
parts.

Corollary
The Π3 theory of De is undecidable.

Theorem (Kent 06)
The class of finite bipartite graphs is Σ1-elementary definable in De(≤ 0′e)
and hence the Π3 theory of De(≤ 0e

′) is undecidable.
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The extension of embeddings problem

There is an algebraic equivalent of deciding which ∀∃-sentences are true in a
degree structure D:

Problem
We are given a finite partial order P and finite partial orders Q0, . . . Qn ⊇ P .
Does every embedding of P in D extend to an embedding of one of the Qi?

When n = 1 we call this the extension of embeddings problem.

In DT the extension of embeddings problem is equivalent to the general one.

Theorem (Lerman, Shore 78-88)
Every finite lattice can be embedded as an initial segment of DT .

If this embedding of P extends to an embedding of some Qi then every
embedding of P does.

The Π2-theory of DT is decidable.
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The extension of embeddings De and in De(≤ 0′
e)

Recall that we can’t have initial segment embeddings in the local or global
structure of the enumeration degrees.

Theorem (Lempp, Slaman, Soskova 21; Lempp, Slaman, Sorbi 05)
The extension of embeddings problem in De and in De(≤ 0′e) is decidable.

This is not enough:

Example
Consider the partial order P with two elements a < b. Consider two
extensions adding one more element to P : Q1 = {c < a < b} and
Q2 = {a < c < b}.

In DT we can embed P as 0T <m, where m is minimal, blocking both
Q1 and Q2.

In De we can’t: if a does not go to 0e then by downwards density we can
extend to Q1. If it does, we can extend to Q2.
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What’s next for De

We need to understand what aspects of De determine its Π2-theory.

Perhaps, a Π2 sentence φ is true in De if and only if φ is true in every upper
semi-lattice U with least element that exhibits end-extensions and downward
density.

This implies that there are degrees a
and b such that: a and b are a
minimal pair and if x < a ∨ b then
x ≤ a or x ≤ b. 0

a b

a ∨ b

Theorem (Jacobsen-Grocott)
If a and b are enumeration degrees such that every degree x ≤ a ∨ b is
bounded by a or bounded by b, then {a,b} is not a minimal pair.

Open problem. Is the Π2-theory of De or De(≤ 0′e) decidable?
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Part 2. Natural operators and first order definability in the
enumeration degrees.



The search for an extension of the Turing jump

The Turing operator A→ A′ is an integral part of degree theory. We want to
find the natural extension of the jump operator to non-total enumeration
degrees.

Emblematic properties of the Turing jump operator include:
1 It is monotone: A ≤T B if and only if A′ ≤1 B

′;
2 It is strictly increasing: A <T A

′;
3 Jump inversion: for every X ≥T ∅′ there is an A such that A′ ≡T X .
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First attempt: the set KA

Recall that the Turing jump of a set A is
⊕

e∈ωW
A
e =

{
⟨e, x⟩ | x ∈WA

e

}
,

where WA
e lists all sets that are c.e. in A.

Definition
Let KA =

⊕
e∈ω Γe(A), where Γe lists all enumeration operators.

Consider the properties of A→ KA with respect to enumeration reducibility.
1 It is monotone: A ≤e B if and only if KA ≤1 KB .
2 It is not strictly increasing: A ≡e KA!
3 Jump inversion: trivial.
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The skip and the enumeration jump on sets

Definition
The skip of A is the set A♢ = KA.

1 It is monotone: A ≤e B if and only if KA ≤1 KB iff KA ≤1 KB .
2 It is strict: A ≰e KA, but not increasing.

Definition (Cooper 1984)

The enumeration jump of A is the set A′ = KA ⊕KA.

1 It is monotone: A ≤e B implies A′ ≤1 B
′ but this is not always

reversible.
2 It is strictly increasing: A <e A

′.
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The skip and the enumeration jump on degrees

Definition
The enumeration jump of de(A) is de(A)′ = de(KA ⊕KA).

The skip of de(A) is de(A)♢ = de(KA).

Note that a′ = a ∨ a♢.

Proposition
If a = ι(x) is a total enumeration degree then

a′ = a♢ = ι(x′).
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Operator inversion

By definition the range of the enumeration jump consists of total enumeration
degrees above 0′e. So where possible, jump inversion for the enumeration
jump follows from jump inversion for the Turing jump.

Theorem (McEvoy 1984)
Every total degree a ≥ 0′e is the jump of a quasiminimal degree.

The skip is not constrained in a similar way!

Theorem (AGLMSS 2021)
Every degree a ≥ 0′e is the skip of a quasiminimal degree.
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Relativization

Soskov proved a very general jump inversion theorem that allows you to
control the iterated jumps of a set. A consequence is:

Theorem (Soskov 2000)
For every x and every total degree a ≥ x′ there is degree y ≥ x with y′ = a.

Relativization does not work well for the skip :

Theorem (Slaman, Soskova 2025)

For every x and every degree a ≥ x′ there is degree y ≥ x with y♢ = a.

However, there are degrees x and a ≥ x♢ so that no degree y ≥ x has
y♢ = a.
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Skip cycles

Recall that KA =
⊕

e Γe(A).

The set operator that maps A to KA is monotone: A ⊆ B implies KA ⊆ KB .

It follows that the double skip operator on sets that maps A to A♢♢ = KKA

has the same property:

A ⊆ B ⇒ KA ⊆ KB ⇒ KA
♢ ⊇ KB

♢ ⇒ KKA
⊆ KKB

The Knaster-Tarski fixed point theorem implies:

Theorem (AGLMSS 2021)

There is a set A so that A♢♢ = A.

We call such sets skip 2-cycles. They are above every hyperarithmetical set.

Note that if A is a skip 2-cycle then A and A♢ are incomparable sets that have
1-equivalent jumps: A′ = KA ⊕KA and (A♢)′ = KA ⊕KKA

= KA ⊕A.
28 / 66



Definability of the enumeration jump

Kalimullin 2003 isolated a definable class of pairs of degrees, later called
K-pairs.

He showed that K-pairs relativize nicely to any other degree.

He proved that z′ is the largest degree which can be represented as the least
upper bound of a triple a,b, c, such that each pair {a,b}, {b, c}, and {a, c}
is a K-pair relative to z.

Theorem (Kalimullin 2003)
The enumeration jump is first order definable in De.

Question
Is the skip operator first order definable?
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K-pairs

Definition (Kalimullin 2003)
A pair of sets {A,B} is a K-pair if there is a c.e. set W so that:

A×B ⊆W and A×B ⊆W.

Example
1 If A is c.e. then {A,B} is a K-pair for every B as witnessed by A× ω.
2 If A is a left cut in a computable linear ordering ≤L on ω then {A,A} is

a K-pair as witnessed by the set {⟨n,m⟩ | n ≤L m}.

The first kind we call trivial and the second semicomputable. Jockusch 1968
introduced the semi-computable sets in his thesis.
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Properties of K-pairs

Proposition
Let {A,B} be a nontrivial K-pair.

1 If C ≤e B then {A,C} is a K-pair.
2 A and B are quasiminimal.
3 A ≤e B and A ≤e ∅′ ⊕B.

Proof.
To see (3) let W witness that {A,B} is a K-pair and let
C =

{
a | (∃b)[⟨a, b⟩ ∈W & b ∈ B]

}
.

C ⊆ A because A×B ⊆W .

A ⊆ C as otherwise there is some a∗ ∈ A so that (a∗, b) ∈W implies b ∈ B
and as A×B ⊆W this means B = {b | ⟨a∗, b⟩ ∈W} is c.e.
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Definability of K-pairs

Theorem (Kalimullin 2003)
A pair of sets {A,B} is a K-pair if and only if the degrees de(A) = a and
de(B) = b satisfy

(∀x)[(a ∨ x) ∧ (b ∨ x) = x.]

Proof.
Suppose {A,B} is a K-pair witnessed by W and let
Y = Γ(A⊕X) = Λ(B ⊕X).

n ∈ Y if and only if there are axioms ⟨n,DA ⊕DX⟩ ∈ Γ and
⟨n, FB ⊕ FX⟩ ∈ Λ so that DA × FB ⊆W and DX ∪ FX ⊂ X .

The reverse direction uses a construction reminiscent of the proof of the
Posner-Robinson theorem: we show that if {A,B} is not a K-pair there there
is total function g so that A⊕Gg ≥e Gg′ and B ⊕Gg ≥e Gg′ .
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An alternative first order definition of the jump

Theorem (Ganchev, Soskova 2015)
Let z > 0e. Then z′ is the largest degree that can be represented as the least
upper bound of a ∨ b of a nontrivial K-pair {a,b} with a ≤ z.

Proof.
If {A,B} is a K-pair and A ≤e Z then B ≤e A ≤e KA ≤e KZ so
A⊕B ≤e Z

′.

For a set X consider LX = {σ ∈ 2<ω | σ ≤lex X} and let RX = LX .

{LX , RX} is a semi-computable K-pair.

LX ≤e X and LX ⊕RX ≡e X ⊕X .

Consider {LKZ
, RKZ

}. We have that LKZ
≤e KZ ≡e Z and

LKZ
⊕RKZ

≡e KZ ⊕KZ = Z ′.

If LKZ
or RKZ

is c.e. then Z ′ ≤e ∅′: we use a priority construction.
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Towards a definition of the total enumeration degrees

Consider this example again: LX = {σ ∈ 2<ω | σ ≤lex X} and RX = LX .

{LX , RX} is a semi-computable K-pair and LX ⊕RX ≡e X ⊕X .

Theorem (Jockusch 1968)
A nonzero degree is total if and only if it is the least upper bound of the
elements of a non-trivial semi-computable K-pair.

Suppose {A,A} is a non-trivial K-pair and A ≤ C.

If {C,A} is a K-pair then C ≤e A = A.

Definition (Ganchev, Soskova 2015)
A K-pair {a,b} is maximal if whenever a ≤ c, b ≤ d and {c,d} is a K-pair
we have that a = c and b = d.
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Defining totality in De

Theorem (Cai, Ganchev, Lempp, Miller, Soskova 2016)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable set C,
such that A ≤e C and B ≤e C.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets {A,B} forms a
nontrivial K-pair.

1 The countable component: we use W to construct an effective labeling
of the computable linear ordering Q.

2 The uncountable component: C will be a left cut in this ordering
enumeration reducible to B.

Theorem (Cai, Ganchev, Lempp, Miller, Soskova 2016)
The set of total enumeration degrees is first order definable in De.
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The relation c.e. in

Recall that ι is the standard embedding of DT into De.

Theorem (Cai, Ganchev, Lempp, Miller, Soskova 2016)
The set {⟨ι(a), ι(x)⟩ | a is c.e. in x} is first order definable in De.

Proof.
A Turing degree a is c.e. in a nonzero Turing degree x if and only if ι(a) is
the least upper bound of a maximal K-pair with one side bounded by ι(x).

A result by Cai and Shore implies that a is c.e. iff a ∨ b is c.e. in b for every
b ≰T 0′T .
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Consequences: the full theory

Theorem (Simpson 77)
The theory of DT is computably isomorphic to second order arithmetic.

The fact that ≤e is arithmetically definable and the definability of the total
degrees yield:

Corollary (Slaman, Woodin 1997)
The theory of De is computably isomorphic to second order arithmetic.
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The automorphism question

A long standing open questions in degree theory is whether DT has a
nontrivial automorphism.

Definition
A set B is an automorphism base for a structure A if whenever π1 and π2 are
automorphisms of A that agree on B they are the same: π1 = π2.

Theorem (Slaman, Woodin 1986)
The Turing degrees have at most countably many automorphisms. There is a
single Turing degree g ≤ 0(5) that forms an automorphism base.
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The total degrees as an automorphism base

By Selman’s theorem de(A) is determined by the total degrees above it.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees.

A nontrivial automorphism of De induces a nontrivial automorphism of
DT .

De has at most countable many automorphisms.

The total degrees below 0
(5)
e are an automorphism base of De.

Theorem (Slaman, Soskova 2016)
The total degrees below 0′e are an automorphism base of De, and so a
nontrivial automorphism of De induces a nontrivial automorphism of
De(≤ 0′e) and DT .
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An indexing of the c.e. degrees

Definition
We say that p⃗ code a structure
A = (A,R1, . . . Rk) in a degree structure D if
there are formulas φU , φRi that make the structure
M with universe U = {x| De |= φU (x, p⃗)} and
relations defined by φRi isomorphic to A.

Theorem (Slaman, Woodin 1990)
There are parameters p⃗ computable from 0′ which code the standard model of
first order arithmetic together with a function ψ : NM → DT such that
ψ(eM) = dT (We).

We call ψ an indexing of the c.e. Turing degrees.
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An indexing of the Π0
1 degrees

Theorem (Slaman, Woodin 1990)
There are total parameters p⃗ below 0′e which code
the standard model of first order arithmetic
together with a function ψ : NM → DT such that
ψ(eM) = de(We ⊕We).

If π1 and π2 are automorphisms that agree on p⃗ then they agree on every Π0
1

enumeration degree.

The plan is to extend the indexing ψ so that it determines all degrees below
0
(5)
e . We already know that this is an automorphism base.
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Capturing all total degrees below 0e
′

A degree a is low if a′ = 0′e.

We prove that we can identify every distinct low
enumeration degree by its position relative the Π0

1

enumeration degrees.

This allows us to extend ψ so that it indexes all
low enumeration degrees.

Every total degree below 0′e is the join of two low enumeration degrees: a
maximal K-pair below 0′e is low.

This allows us to extend ψ so that it indexes all total degrees below 0′e.
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Moving outside the local structure

We next extend our previous result to capture all
total degrees that are “c.e. in” and above some
total ∆0

2 enumeration degree.

Sacks jump inversion and the fact that the
jump is definable for degrees above 0′e.

Sacks splitting theorem, a new priority
construction and the fact that the image of the
relation “c.e. in” is definable for degrees
incomparable to 0′e.

Relativizing the previous step we get all total
degrees in an interval of the form [x,x′], where
x ≤ 0′e is total.
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Iterating

We finally use a forcing construction and
properties of 2-generic sets to show that we can
further capture all total degree below 0′′e .

So from an indexing of all total degrees below 0′e
we get an indexing of all degrees below 0′′e .

Iterating this result we extend our indexing to capture all total degrees below
0
(5)
e .

But that, we know already, is an automorphism base.

Question
Are there nontrivial automorphisms of De(≤ 0′e)?

44 / 66



Part 3. The texture of the enumeration degrees: how
effective mathematics gives rise to a zoo of classes.



Enumeration reducibility in computable structure theory

Let A be a countable structure. If B is isomorphic to A and has domain ω, we
say that B is a copy of A. We identify B with its atomic diagram.

Definition (Jockusch, Richter 1981)
The degree spectrum of A is the set of Turing degrees of copies of A.

We say that A has Turing degree x if x computes a copy of A and every copy
of A computes x.

If A has Turing degree x then its degree spectrum is the Turing cone above x.

Not every structure has a Turing degree.
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The enumeration degree of a structure

Definition
We say that A has enumeration degree de(X) if every enumeration of X
computes a copy of A and every copy of A computes an enumeration of X .

If A has enumeration degree x then its degree spectrum maps to the set of
total degrees above x—the enumeration cone above X .

If A has enumeration degree then that degree is the enumeration degree of
some ∃-type of some tuple in A.

If A has Turing degree dT (A) then A has enumeration degree de(A⊕A).

46 / 66



Examples of structures with enumeration degree

Each of the following classes of structures always have enumeration degree
and every enumeration degree is the degree of some such structure.

1 (Calvert, Harizanov, Shlapentokh 07) Torsion-free abelian groups of
finite rank;

2 (Frolov, Kalimullin, Miller 09) Fields of finite transcendence degree over
Q .

3 (Steiner 13) Graphs of finite valence with finitely many connected
components.

Note! If the enumeration degree of a structure A is non-total then A does not
have Turing degree.
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Computable metric spaces

Definition
A computable metric space is a metric space M together with a countable
dense sequence QM = {qMn }n∈ω on which the metric is computable (as a
function ω2 → R).

Example
The Hilbert cube is [0, 1]ω with the metric

d(α, β) =
∑
n∈ω

|α(n)− β(n)|/2n.

Let Q[0,1]ω be the sequences of rationals in [0, 1] with finite support.

Other computable metric spaces include 2ω, ωω, R, and C[0, 1].
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Points in computable metric spaces

Definition
λ : Q+ → ω is a name of a point x ∈ M if for all rationals ε > 0 we have
dM(x, qMλ(ε)) < ε.

As before, the complexity of a point in a metric space can be captured through
the collection of Turing degrees of names of this point.

Example
Fix a real number r ∈ R with the usual metric. Let Dr = {q ∈ Q | q < r}.

Every name λ for r can compute Dr: If r is not rational then q < r if and only
if there is some small ε so that λ(ε)− q > ε and q > r if and only if there is
some small ε so that q − λ(ε) > ε. If r is rational then Dr is computable.

Dr can compute a name λr for r, a name of least Turing degree.
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Degrees of points in computable metric spaces

Question (Pour El and Lempp)
Do elements of computable metric spaces have least Turing degree names?

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x ≤r y if there is a uniform way to compute a name for x from a name for y.

This reducibility induces the continuous degrees.

Theorem (Miller 2004)
Every continuous degree contains a point from [0, 1]ω and a point from
C[0, 1].
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Embedding the continuous degrees into the e-degrees

For α ∈ [0, 1]ω, let

Cα =
⊕
i∈ω

{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} .

Observation. Enumerating Cα is exactly as hard as computing a name for α.
So α 7→ Cα induces an embedding of the continuous degrees into the
enumeration degrees.

Elements of 2ω, ωω, and R are mapped onto the total degree of their least
Turing degree name (i.e., their Turing degree).

A point x ∈ M has nontotal (enumeration) degree iff it has no least
Turing degree name.

So Pour El and Lempp’s question becomes: are there nontotal continuous
degrees.
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Nontotal continuous degrees

Theorem (Miller 2004)
There is a nontotal continuous degree.

Proof.
If x ∈ [0, 1]ω has total degree, then there is a y ∈ 2ω and Turing
functionals Γ, Ψ that map (names of) x to (names of) y and back.
The subspaces on which the functions induced by Γ and Ψ are inverses
are homeomorphic (because computable functionals induce continuous
functions).
Subspaces of 2ω are zero dimensional, so if x ∈ [0, 1]ω has total degree,
then it is in one of countably many zero dimensional “patches”.
The Hilbert cube [0, 1]ω is strongly infinite dimensional, hence not a
countable union of zero dimensional subspaces.
So some x ∈ [0, 1]ω is not covered by one of these patches.

Other proofs invoke Sperner’s lemma or a variant of Brouwer’s fixed point
theorem to multivalued functions on an infinite dimensional space.
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The structure of nontotal continuous degrees

Definition
A Turing degree a is PA

if a computes a complete extension of Peano Arithmetic, or equivalently

if a computes a path in every infinite computable tree.

The degree a is PA above b if a computes a path in every infinite
b-computable tree.

Theorem (Miller 2004)
The total degrees below a nontotal continuous enumeration degree form a
Scott set, an ideal closed under the relation “PA above”.

The total (Turing) degree a is PA above the total (Turing) degree b if and only
if there is a nontotal continuous degree c such that b < c < a.
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Almost total degrees

As it turns out, the continuous enumeration degrees have a very simple
characterization inside the enumeration degrees.

Definition
An enumeration degree a is almost total if whenever b ≰ a is total, a ∨ b is
also total.

Theorem (Andrews, Igusa, Miller, Soskova)
Almost total degrees are continuous.

Proof.
The proof is in several steps and uses an application of the effective version of
the Urysohn Metrization Theorem proved by Schröder (1998).
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Definability of the continuous degrees

Corollary
The continuous degrees are first order definable in the enumeration degrees.

The relation “PA above” between total degrees is first order definable in the
enumeration degrees.

All known constructions of nontotal continuous degrees involve a nontrivial
topological component.

Conversely, Kihara and Pauly proved that the fact that the Hilbert cube is not
a countable union of subspaces of Cantor space follows from the fact that
there is a nontotal continuous degrees in every cone.

So a purely topological fact is reflected in the structure of the enumeration
degrees.
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PA relative to an enumeration oracle

You can extend relations defined on Turing degrees to enumeration oracles by
replacing “c.e. in” with “≤e”:

Definition
A set U ⊆ 2ω a Σ0

1⟨A⟩ class if there is a set of strings W ≤e A, such that

U = [W ] = {X ∈ 2ω | (∃σ ∈W ) X ⪰ σ} .

A Π0
1⟨A⟩ class is the complement of a Σ0

1⟨A⟩ class.

⟨B⟩ is PA relative to ⟨A⟩ if B enumerates (the initial segments of) a member
of every nonempty Π0

1⟨A⟩ class.

Thus, B is PA above A if and only if ⟨B ⊕B⟩ is PA above ⟨A⊕A⟩.
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Lifting properties from the Turing world

Transferring theorems from the Turing degrees to total oracles we have:
1 No total degree a is ⟨self⟩-PA: a is not PA relative to a.
2 If b is PA relative to a and a is total then b ≥ a. We say that a is

PA-bounded.
3 If a is total then it has a universal class: a Π0

1⟨a⟩ class P such that ⟨b⟩ is
PA relative to ⟨a⟩ if and only if b enumerates a member of P .

Theorem (Franklin, Lempp, Miller, Schweber, and Soskova 2019)
The continuous degrees are exactly the PA-bounded degrees. They cannot be
⟨self⟩-PA and they have universal classes.

Theorem (Miller, Soskova 2014)
There are ⟨self⟩-PA oracles. They cannot have universal oracles.

Investigating the oracles with a universal class lead to the introduction and
exploration of many other classes.
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Symbolic dynamics

The shift operator on 2ω is the map taking an infinite binary sequence α ∈ 2ω

to the unique β ∈ 2ω such that α = aβ for some a ∈ {0, 1}, i.e., the operator
that erases the first bit of the sequence.

Definition
A subshift is closed, shift-invariant subspace X of 2ω.

The degree spectrum of a subshift X is the set Spec(X) of Turing
degrees of elements of the subshift.

X is a minimal subshift if no nonempty Y ⊂ X is a subshift.

If Spec(X) has a least element, then it could be considered as the Turing
degree of the subshift X .
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The spectrum of a minimal subshift

Given a minimal subshift X , we would like to characterize the set of Turing
degrees of members of X .

Definition
The language of subshift X ⊆ 2ω is the set

LX =
{
σ ∈ 2<ω | (∃α ∈ X) σ is a subword of α

}
.

1 If X is minimal and σ ∈ LX , then for every α ∈ X , σ is a subword of α.
So every element of X can enumerate the set LX .

2 If we can enumerate LX , then we can compute a member of X .

Theorem (Jeandel 2015)
A Turing degree a computes a member of the minimal subshift X if and only
if a can enumerate LX .
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A special property of the language of a minimal subshift

Jeandel noticed something special about LX for a minimal subshift X .

An enumeration of LX allows us to eliminate branches that do not
belong to X in a stage by stage manner.

If w is word that appears along every branch that remains at stage s, then
w ∈ LX .

The compactness of 2ω ensures that we won’t miss any word from the
language using this process of enumeration.

So LX ≤e LX .
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Cototal sets and degrees

Definition
A set A is cototal if A ≤e A. An enumeration degree is cototal if it contains a
cototal set.

Example

1 Every total enumeration degree is cototal: A⊕A ≡e A⊕A.
2 Every Σ0

2 set A has cototal degree because A ≡e KA ≤ ∅′e ≤e KA.
3 Every continuous degree is cototal: Cα ≤e Cα because q < α if and only

if there is some rational r so that q < r ≤ α.
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Characterizations of the cototal enumeration degrees

Theorem (McCarthy 2018)
Every cototal enumeration degree is the degree of the language of a minimal
subshift.

Theorem (McCarthy 2018)
The cototal enumeration degrees are the degrees of complements of maximal
antichains in ω<ω.

Theorem (Montalban 2015, McCarthy 2018)
If the degree spectrum of a structure, viewed as a subset of Cantor space, is
Fσ then it is the enumeration cone of a cototal degree.
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The cototal enumeration degrees as a substructure of the
enumeration degrees

Recall that sets with good approximations behave nicely in terms of density:

Theorem (Harris; Miller, Soskova 2018)
The good enumeration degrees are exactly the cototal enumeration degrees.

Theorem (Miller, Soskova 2018)
The cototal enumeration degrees are dense.

Theorem (AGKLMSS 2019)

A degree a is cototal if and only if a′ = a♢.
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Topological classification of classes of e-degrees

Definition (Kihara, Pauly 2018)
A represented space is a pair of a second countable T0 topological space X
and listing of an open basis BX = {Bi}i<ω.

A name for a point x ∈ X is an enumeration of the set Nx = {i | x ∈ Bi}.

Thus a represented space X gives rise to a class of e-degrees DX ⊆ De.

Example (Kihara, Ng, and Pauly 2019)
DSω = De, where S is the Sierpinski topology {∅, {1}, {0, 1}}.

D2ω = DR is the total enumeration degrees.

D[0,1]ω is the continuous degrees.

DR 1
2

is the semicomputable degrees.

The effectively Gδ spaces give rise to the cototal degrees.
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The graph cototal degrees

Question
Can you cover [0, 1]ω with countably many homeomorphic copies of
subspaces of Nωcof?

Definition
A degree is graph cototal if it contains Gf for a total f .

Theorem (AGKLMSS 2019)
There are cototal degrees that are not graph-cototal.

Theorem (Kihara, Ng, and Pauly 2019)
The graph-cototal degrees are the degrees in DNω

cof
.

Question
Is there a continuous degree that is not graphcototal?
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The end

De is a degree structure with intricate connections to DT and many
interesting open questions.
Looking through the lens of effective mathematics gives us a rich variety
of classes of enumeration degrees.
Which of them are definable?
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