The logics L_n

Partial solution of P2 0000000

On logics arising from the Čech-Stone compactification of ordinals.

Joel Lucero-Bryan, New Mexico State University

Joint work: Guram Bezhanishvili, New Mexico State University Nick Bezhanishvili, University of Amsterdam Jan van Mill, University of Amsterdam

2025 North American Meeting of the ASL–NMSU, Las Cruces, NM, USA: 13–16 May 2025 The logics L_n

INTRODUCTION

MCKINSEY-TARSKI

Adopt an algebraic perspective of a topological space X:

$$(\wp(X), \mathbf{c})$$
 where $\mathbf{c}: \wp(X) o \wp(X)$ is closure in X

KURATOWSKI CLOSURE AXIOMS

$$\begin{array}{rcl} A \subseteq \mathbf{c}A & \Leftrightarrow & p \to \Diamond p \\ \mathbf{c}\mathbf{c}A \subseteq \mathbf{c}A & \Leftrightarrow & \Diamond \Diamond p \to \Diamond p \\ \mathbf{c}(A \cup B) = \mathbf{c}(A) \cup \mathbf{c}B & \Leftrightarrow & \Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q \\ \mathbf{c} \varnothing = \varnothing & \Leftrightarrow & \text{(inference rule of necessitation)} \end{array}$$

Interpreting the modal language: diamond is closure

A formula φ is valid in X if φ evaluates to X for each valuation assigning a subset to each proposition, written $X \models \varphi$. The logic of X is $L(X) = \{\varphi \mid X \models \varphi\}$; notice S4 $\subseteq L(X)$.

Some classical results

- [MT44] S4 is the logic of any separable dense-in-itself metrizable space.
- **[RS63]** Under the axiom of choice, the M-T theorem above holds without the separability assumption.
- **[BGLB15]** The logics arising from metrizable spaces have been characterized, and include logics other than S4:

 $\mathsf{S4} \subseteq \mathsf{S4.1} \subseteq \mathsf{S4}.\mathsf{Grz} \subseteq \dots \subseteq \mathsf{S4}.\mathsf{Grz}_2 \subseteq \mathsf{S4}.\mathsf{Grz}_1$

(these logics are defined subsequently)

How can we move beyond the realm of metrizable spaces?

A FIRST ANSWER... (VIA KRIPKE SEMANTICS)

- An S4-frame is an ordered pair $\mathfrak{F} = (W, R)$ where R is a quasi-ordering of W; that is, R is reflexive and transitive.
- $A \subseteq W$ is an *R*-upset of \mathfrak{F} if $w \in A$ and wRv imply $v \in A$.
- The collection of *R*-upsets of \mathfrak{F} form the Alexandroff topology τ_R on *W*; and closure is given by

$$\mathbf{c}A = R^{-1}(A) := \{ w \mid (\exists v \in A) w R v \}.$$

- For each formula φ , we have that $\mathfrak{F} \models \varphi$ iff $(W, \tau_R) \models \varphi$.
- Each Kripke complete logic above S4 is topologically complete, but Alexandroff spaces are typically not metrizable (since they are rarely Hausdroff).

A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification $\beta(\omega)$ of the ordinal space ω is S4.1.2, which obtained from S4 by postulating

 $\mathsf{ma} := \Box \Diamond p \to \Diamond \Box p \text{ and } \mathsf{ga} := \Diamond \Box p \to \Box \Diamond p.$

Proof sketch...indicating some techniques

Sound:

- Call X densely discrete (DD) if its isolated points are dense. If X is DD, then $X \models \Box \Diamond p \rightarrow \Diamond \Box p$ (but not conversely).
- Call X extremally disconnected (ED) if the closure of each open set is open.
 X is ED iff X ⊨ ◊□p → □◊p.
- $\beta(\omega)$ is both DD and ED, and thus S4.1.2 \subseteq L($\beta(\omega)$).

A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification $\beta(\omega)$ of the ordinal space ω is S4.1.2, which obtained from S4 by postulating

 $\mathsf{ma}:=\Box\Diamond p\to \Diamond\Box p \text{ and } \mathsf{ga}:=\Diamond\Box p\to \Box\Diamond p.$

Proof sketch...indicating some techniques

Complete:

Key tool: A mapping f : X → Y between spaces is interior if f is continuous and open, and Y is an interior image of X if f is onto; we have f⁻¹(cB) = cf⁻¹(B) for each B ⊆ Y.
If Y is an interior image of X, then L(X) ⊆ L(Y); thus, Y ⊭ φ, then X ⊭ φ (including the case when Y is an Alexandroff space of an S4-frame; f⁻¹(R⁻¹(B)) = cf⁻¹(B)).

A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification $\beta(\omega)$ of the ordinal space ω is S4.1.2, which obtained from S4 by postulating

 $\mathsf{ma}:=\Box\Diamond p\to \Diamond\Box p \text{ and } \mathsf{ga}:=\Diamond\Box p\to \Box\Diamond p.$

PROOF SKETCH...INDICATING SOME TECHNIQUES

Complete:

- Say (W, R) is rooted if there is a root w ∈ W such that R[w] := {v ∈ W | wRv}.
 S4.1.2 is the logic of finite rooted S4-frames that have a unique maximal point.
- Construct an interior mapping f : β(ω) → (W, τ_R) for each such frame (W, R) above; then L(β(ω)) ⊆ S4.1.2. The original proof uses set theoretic axioms beyond ZFC, but Dow has a proof in ZFC.

SHEHTMAN'S PROBLEMS

Convention: View an ordinal as a topological space by equipping it with the interval topology induced by its order.

Generalizing the result that $L(\beta(\omega)) = S4.1.2$, Shehtman posed the following problems:

- **P1** For each $n \ge 1$, axiomatize the modal logic $L_n := L(\beta(\omega^n))$ of the Čech-Stone compactification $\beta(\omega^n)$ of the ordinal ω^n .
- P2 Describe the logics that arise as the logic of $\beta(\gamma)$ for an arbitrary ordinal γ .

As we present a partial solution to P2 we will see that the logics L_n appearing in P1 play a key role in answering P2.

The logics L_n

Preliminaries

Some known facts about ordinals

- \bullet Each ordinal γ is locally compact, normal, and scattered.
- Therefore, β(γ) is a zero-dimensional DD space and γ is homeomorphic to an open subspace of β(γ).

Definition

The logic S4.1 is obtained from S4 by postulating $\Box \Diamond p \rightarrow \Diamond \Box p$.

Lemma

For any ordinal γ , we have that S4.1 \subseteq L($\beta(\gamma)$).

Proof

$$\beta(\gamma) \models \Box \Diamond p \rightarrow \Diamond \Box p \text{ since } \beta(\gamma) \text{ is DD.}$$

The logics L_n 0000000000 Partial solution of P2 0000000

REALIZING ω^n

For $n \ge 1$, we work with the product space $(\omega^n + 1) \times \omega$ since it is homeomorphic to the ordinal ω^{n+1} , depicted below is $\beta(\omega^2)$:

$$\omega^2\simeq (\omega+1) imes \omega$$

The logics L_n 00000000000 Partial solution of P2 0000000

Realizing ω^n

For $n \ge 1$, we work with the product space $(\omega^n + 1) \times \omega$ since it is homeomorphic to the ordinal ω^{n+1} , depicted below is $\beta(\omega^2)$:

In the red oval is a clopen copy of ω in ω^2 .

LEMMA

For each $n \ge 1$ we have that $L_{n+1} \subseteq L_n$, and hence

$$\mathsf{S4.1}\dots\subseteq\mathsf{L}_3\subseteq\mathsf{L}_2\subseteq\mathsf{L}_1=\mathsf{S4.1.2}$$

Pertinent known results

- If Y is an open subset of X, then $L(X) \subseteq L(Y)$.
- Let X be normal and c closure in $\beta(X)$.
 - **(**) If Y is clopen in X, then $\mathbf{c}(Y)$ is clopen in $\beta(X)$.
 - If Y is closed in X, then c(Y) is a compactification of Y equivalent to β(Y).

PROOF SKETCH

- ω^n is homeomorphic to a clopen subspace X of ω^{n+1} .
- $\beta(\omega^n)$ is equivalent to **c**X, which is clopen in $\beta(\omega^{n+1})$.

•
$$L_{n+1} \subseteq L(\mathbf{c}X) = L_n$$
.

For each $n \ge 1$, we have $L_{n+1} \subset L_n$.

To prove this we require that each <u>finite</u> rooted S4-frame $\mathfrak{F} = (W, R)$ has its associated Fine-Jankov formula $\chi_{\mathfrak{F}}$ encoding \mathfrak{F} :

TOPOLOGICAL VERSION OF FINE'S RESULT (KNOWN)

For each space X, we have that $X \models \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X.

Let χ_n be the Fine-Jankov formula of the partially ordered frame \mathfrak{T}_n depicted below:

For each $n \ge 1$, we have $L_{n+1} \subset L_n$.

We have the following proof sketch that $\chi_n \notin L(\beta(\omega^{n+1}))$:

- \mathfrak{T}_n is an interior image of ω^{n+1} (picture proof for ω^2).
- $\beta(\omega^{n+1}) \not\models \chi_n$ since ω^{n+1} is homeomorphic to an open subset of $\beta(\omega^{n+1})$.
- $\chi_n \not\in L_{n+1}$.

Background

The logics L_n 00000000000 Partial solution of P2 000000

Picture proof for ω^2 and \mathfrak{T}_1

For each $n \ge 1$, we have $L_{n+1} \subset L_n$.

To prove this we additionally require the following:

Known

If Y and Z are disjoint closed subsets of a normal space X, then $\mathbf{c}(Y)$ and $\mathbf{c}(Z)$ are disjoint in $\beta(X)$.

Lemma

Let X be a zero-dimensional space and $\mathfrak{F} = (W, \leq)$ a rooted S4-frame containing a maximal point m. Then \mathfrak{F} is an interior image of X iff \mathfrak{F} is an interior image of some open subspace of X.

COROLLARY

Let $n \ge 1$ and \mathfrak{F} a finite rooted S4-frame. Then $\beta(\omega^n) \models \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of $\beta(\omega^n)$.

For each $n \ge 1$, we have $L_{n+1} \subset L_n$.

We have the following proof sketch that $\chi_n \in L(\beta(\omega^n))$:

• Assume $f : \beta(\omega^n) \to \mathfrak{T}_n$ is an interior mapping. Let A be the preimage of the red subset in ω^n and B the preimage of the blue point in ω^n .

For each $n \ge 1$, we have $L_{n+1} \subset L_n$.

We have the following proof sketch that $\chi_n \in L(\beta(\omega^n))$:

- Assume ℑ_n is an interior image of β(ωⁿ). Let A be the preimage of the red subset in ωⁿ and B the preimage of the blue point in ωⁿ.
- $\{A, B\}$ is a partition of ω^n consisting of open sets.
- Thus, $\emptyset \neq f^{-1}(r) \subseteq \mathbf{c}(A) \cap \mathbf{c}B = \emptyset$, which is a contradiction.
- Applying the corollary, we have $\beta(\omega^n) \models \chi_n$, or that $\chi_n \in L_n$.

The logics L_n

Partial solution of P2 000000

Thus we have established that

$$\mathsf{S4.1} \subseteq \dots \subset \mathsf{L}_3 \subset \mathsf{L}_2 \subset \mathsf{L}_1 = \mathsf{S4.1.2}$$

Lemma

The S4.1-frame \mathfrak{F} depicted below is not an interior image of $\beta(\omega^n)$ for any $n \ge 1$:

Thus, $\chi_{\mathfrak{F}} \in L(\beta(\omega^n))$ for each $n \ge 1$. (Proof is similar to previous)

 $\chi_{\mathfrak{F}} \not\in \mathsf{S4.1}$ since \mathfrak{F} is an S4.1-frame, which motivates defining

$$\mathsf{L}_{\infty} = \bigcap_{n \geq 1} \mathsf{L}_n$$
, and hence

$$\mathsf{S4.1} \subset \mathsf{L}_{\infty} \subset \cdots \subset \mathsf{L}_3 \subset \mathsf{L}_2 \subset \mathsf{L}_1 = \mathsf{S4.1.2}$$

The logics L_n

Partial solution of P2 •000000

ОN ТО Р2 ...

We now recall a useful representation of a nonzero ordinal.

DEFINITION

Each nonzero ordinal γ can be uniquely written in the Cantor normal form $\gamma = \omega^{\alpha_k} n_k + \cdots + \omega^{\alpha_1} n_1$, where $0 \neq k \in \omega$, each n_i is nonzero and finite, and $0 \leq \alpha_1 < \cdots < \alpha_k$ are ordinals.

THEOREM (STRUCTURAL THEOREM)

For an infinite ordinal γ , we have that $\beta(\gamma)$ is homeomorphic to the disjoint union of a compact ordinal and the Čech-Stone compactification of a power of ω .

PROOF SKETCH OF STRUCTURAL THEOREM

We only consider the case when γ is not compact:

- Write $\gamma = \omega^{\alpha_k} n_k + \cdots + \omega^{\alpha_1} n_1$ in Cantor normal form $(\alpha_1 \neq 0 \text{ as } \gamma \text{ is not compact}).$
- "Tear off" one copy of ω^{α_1} from "the top" of γ by writing $\gamma=\gamma'+\omega^{\alpha_1}$
- Basic ordinal arithmetic yields that $\gamma = \gamma' + \omega^{\alpha_1} = \gamma' + (1 + \omega^{\alpha_1}) = (\gamma' + 1) + \omega^{\alpha_1}$
- $\{\gamma' + 1, \omega^{\alpha_1}\}$ is a clopen partition of γ , implying $\{\gamma' + 1, \mathbf{c}(\omega^{\alpha_1})\}$ is a clopen partition of $\beta(\gamma)$ (as $\gamma' + 1$ is compact).
- $\mathbf{c}(\omega^{\alpha_1})$ is homeomorphic to $\beta(\omega^{\alpha_1})$.
- $\beta(\gamma)$ is homeomorphic to the disjoint union $(\gamma'+1)\oplus\beta(\omega^{\alpha_1})$.

PREPARING TO USE THE STRUCTURAL THEOREM

Definition

S4.Grz is obtained from S4 by postulating the Grzegorczyk axiom

$$\Box(\Box(
ho
ightarrow \Box
ho)
ightarrow
ho)
ightarrow
ho)
ightarrow
ho$$

S4.Grz_n is obtained from S4.Grz by postulating bd_n where

$$\begin{array}{rcl} \mathsf{bd}_1 & = & \Diamond \Box \rho_1 \to \rho_1 \\ \mathsf{bd}_{n+1} & = & \Diamond (\Box \rho_{n+1} \land \neg \mathsf{bd}_n) \to \rho_{n+1} \end{array}$$

THEOREM (ABASHIDZE-BLASS)

Let $\gamma \neq 0$ be an ordinal and $n \geq 1$. If $\omega^{n-1} < \gamma \leq \omega^n$, then $L(\gamma) = S4.Grz_n$. If $\omega^{\omega} \leq \gamma$, then $L(\gamma) = S4.Grz$.

EMPLOYING THE STRUCTURAL THEOREM

Let γ be a noncompact infinite ordinal.

USEFUL FACT

If X is the disjoint union $Y \oplus Z$, then $L(X) = L(Y) \cap L(Z)$.

Combining this with the structural theorem yields:

$$\mathsf{L}(\beta(\gamma)) = \mathsf{L}\left((\gamma'+1) \oplus \beta(\omega^{\alpha_1})\right) = \mathsf{L}(\gamma'+1) \cap \mathsf{L}(\beta(\omega^{\alpha_1}))$$

Thus, when $\alpha_1 = n$ is finite we have $L(\beta(\gamma)) = L(\gamma' + 1) \cap L_n$, and using the Abashidze-Blass theorem gives the result.

EXAMPLE

 $\mathsf{L}(\beta(\omega 2)) = \mathsf{L}\left((\omega + 1) \oplus \beta(\omega)\right) = \mathsf{L}(\omega + 1) \cap \mathsf{L}_1 = \mathsf{S4}.\mathsf{Grz}_2 \cap \mathsf{S4}.1.2$

LOGICS OF THE FORM $L(\beta(\gamma))$ -A PICTURE

A partial solution of $\mathbf{P2}$ -explicit description

Theorem

Each of the following logics arises as $L(\beta(\gamma))$ for some ordinal γ .

- L_m for each $0 < m < \omega$.
- **2** S4.Grz and S4.Grz_n for each $0 < n < \omega$.
- **3** S4.Grz \cap L_m and S4.Grz_n \cap L_m for $0 < m < n < \omega$.

All these logics are depicted by black bullets in the previous figure.

Theorem

Let γ be a nonzero ordinal. If $\beta(\gamma)$ is an ordinal or α_1 in the Cantor normal form of γ is finite, then $L(\beta(\gamma))$ is a logic appearing as a black bullet in the previous figure.

Conjecture

If γ is not compact and $\alpha_1 \geq \omega$ in its CNF, then $L(\beta(\gamma)) = L_{\infty}$.

Thank you for your attention ... any questions?

This work is available at: https://doi.org/10.1112/jlms.70090

Upcoming attractions: the axiomatization of L_2 .