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Introduction

McKinsey-Tarski

Adopt an algebraic perspective of a topological space X :

(℘(X ), c) where c : ℘(X )→ ℘(X ) is closure in X

Kuratowski closure axioms

A ⊆ cA ⇔ p → ♦p
ccA ⊆ cA ⇔ ♦♦p → ♦p

c(A ∪ B) = c(A) ∪ cB ⇔ ♦ (p ∨ q)↔ ♦p ∨ ♦q
c∅ = ∅ ⇔ (inference rule of necessitation)

Interpreting the modal language: diamond is closure

A formula ϕ is valid in X if ϕ evaluates to X for each valuation
assigning a subset to each proposition, written X |= ϕ.
The logic of X is L(X ) = {ϕ | X |= ϕ}; notice S4 ⊆ L(X ).
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Some classical results

[MT44] S4 is the logic of any separable dense-in-itself
metrizable space.

[RS63] Under the axiom of choice, the M-T theorem above
holds without the separability assumption.

[BGLB15] The logics arising from metrizable spaces have
been characterized, and include logics other than S4:

S4 ⊆ S4.1 ⊆ S4.Grz ⊆ · · · ⊆ S4.Grz2 ⊆ S4.Grz1

(these logics are defined subsequently)

How can we move beyond the realm of metrizable spaces?
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A first answer... (via Kripke semantics)

An S4-frame is an ordered pair F = (W ,R) where R is a
quasi-ordering of W ; that is, R is reflexive and transitive.

A ⊆W is an R-upset of F if w ∈ A and wRv imply v ∈ A.

The collection of R-upsets of F form the Alexandroff topology
τR on W ; and closure is given by

cA = R−1(A) := {w | (∃v ∈ A)wRv}.

For each formula ϕ, we have that F |= ϕ iff (W , τR) |= ϕ.

Each Kripke complete logic above S4 is topologically
complete, but Alexandroff spaces are typically not metrizable
(since they are rarely Hausdroff).
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A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification β(ω) of the
ordinal space ω is S4.1.2, which obtained from S4 by postulating

ma := �♦p → ♦�p and ga := ♦�p → �♦p.

Proof sketch...indicating some techniques

Sound:

Call X densely discrete (DD) if its isolated points are dense.
If X is DD, then X |= �♦p → ♦�p (but not conversely).

Call X extremally disconnected (ED) if the closure of each
open set is open.
X is ED iff X |= ♦�p → �♦p.

β(ω) is both DD and ED, and thus S4.1.2 ⊆ L(β(ω)).
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A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification β(ω) of the
ordinal space ω is S4.1.2, which obtained from S4 by postulating

ma := �♦p → ♦�p and ga := ♦�p → �♦p.

Proof sketch...indicating some techniques

Complete:

Key tool: A mapping f : X → Y between spaces is interior if
f is continuous and open, and Y is an interior image of X if f
is onto; we have f −1(cB) = cf −1(B) for each B ⊆ Y .

If Y is an interior image of X , then L(X ) ⊆ L(Y ); thus,
Y 6|= ϕ, then X 6|= ϕ (including the case when Y is an
Alexandroff space of an S4-frame; f −1(R−1(B)) = cf −1(B)).
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A motivating result for a second answer...

[BH09] The logic of the Čech-Stone compactification β(ω) of the
ordinal space ω is S4.1.2, which obtained from S4 by postulating

ma := �♦p → ♦�p and ga := ♦�p → �♦p.

Proof sketch...indicating some techniques

Complete:

Say (W ,R) is rooted if there is a root w ∈W such that
R[w ] := {v ∈W | wRv}.
S4.1.2 is the logic of finite rooted S4-frames that have a
unique maximal point.

Construct an interior mapping f : β(ω)→ (W , τR) for each
such frame (W ,R) above; then L(β(ω)) ⊆ S4.1.2.
The original proof uses set theoretic axioms beyond ZFC, but
Dow has a proof in ZFC.
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Shehtman’s problems

Convention: View an ordinal as a topological space by equipping
it with the interval topology induced by its order.

Generalizing the result that L(β(ω)) = S4.1.2, Shehtman posed
the following problems:

P1 For each n ≥ 1, axiomatize the modal logic Ln := L(β(ωn)) of
the Čech-Stone compactification β(ωn) of the ordinal ωn.

P2 Describe the logics that arise as the logic of β(γ) for an
arbitrary ordinal γ.

As we present a partial solution to P2 we will see that the logics
Ln appearing in P1 play a key role in answering P2.
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Preliminaries

Some known facts about ordinals

Each ordinal γ is locally compact, normal, and scattered.

Therefore, β(γ) is a zero-dimensional DD space and γ is
homeomorphic to an open subspace of β(γ).

Definition

The logic S4.1 is obtained from S4 by postulating �♦p → ♦�p.

Lemma

For any ordinal γ, we have that S4.1 ⊆ L(β(γ)).

Proof

β(γ) |= �♦p → ♦�p since β(γ) is DD.
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Realizing ωn

For n ≥ 1, we work with the product space (ωn + 1)× ω since it is
homeomorphic to the ordinal ωn+1, depicted below is β(ω2):

ω2 ' (ω + 1)× ω

β(ω2) \ ω2ω
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Realizing ωn

For n ≥ 1, we work with the product space (ωn + 1)× ω since it is
homeomorphic to the ordinal ωn+1, depicted below is β(ω2):
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In the red oval is a clopen copy of ω in ω2.
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Lemma

For each n ≥ 1 we have that Ln+1 ⊆ Ln, and hence

S4.1 · · · ⊆ L3 ⊆ L2 ⊆ L1 = S4.1.2

Pertinent known results

If Y is an open subset of X , then L(X ) ⊆ L(Y ).

Let X be normal and c closure in β(X ).
1 If Y is clopen in X , then c(Y ) is clopen in β(X ).
2 If Y is closed in X , then c(Y ) is a compactification of Y

equivalent to β(Y ).

Proof sketch

ωn is homeomorphic to a clopen subspace X of ωn+1.

β(ωn) is equivalent to cX , which is clopen in β(ωn+1).

Ln+1 ⊆ L(cX ) = Ln.
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Lemma

For each n ≥ 1, we have Ln+1 ⊂ Ln.

To prove this we require that each finite rooted S4-frame
F = (W ,R) has its associated Fine-Jankov formula χF encoding F:

Topological version of Fine’s result (known)

For each space X , we have that X |= χF iff F is not an interior
image of any open subspace of X .

Let χn be the Fine-Jankov formula of the partially ordered frame
Tn depicted below:

r
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Lemma

For each n ≥ 1, we have Ln+1 ⊂ Ln.

Tn
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We have the following proof sketch that χn 6∈ L(β(ωn+1)):

Tn is an interior image of ωn+1 (picture proof for ω2).

β(ωn+1) 6|= χn since ωn+1 is homeomorphic to an open subset
of β(ωn+1).

χn 6∈ Ln+1.
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Picture proof for ω2 and T1
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Lemma

For each n ≥ 1, we have Ln+1 ⊂ Ln.

To prove this we additionally require the following:

Known

If Y and Z are disjoint closed subsets of a normal space X , then
c(Y ) and c(Z ) are disjoint in β(X ).

Lemma

Let X be a zero-dimensional space and F = (W ,≤) a rooted
S4-frame containing a maximal point m. Then F is an interior
image of X iff F is an interior image of some open subspace of X .

Corollary

Let n ≥ 1 and F a finite rooted S4-frame. Then β(ωn) |= χF iff F
is not an interior image of β(ωn).
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Lemma

For each n ≥ 1, we have Ln+1 ⊂ Ln.

ωn -fβ(ωn) \ ωn

Tn
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We have the following proof sketch that χn ∈ L(β(ωn)):

Assume f : β(ωn)→ Tn is an interior mapping. Let A be the
preimage of the red subset in ωn and B the preimage of the
blue point in ωn.
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Lemma

For each n ≥ 1, we have Ln+1 ⊂ Ln.

ωn -fβ(ωn) \ ωn

Tn
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We have the following proof sketch that χn ∈ L(β(ωn)):

Assume Tn is an interior image of β(ωn). Let A be the
preimage of the red subset in ωn and B the preimage of the
blue point in ωn.

{A,B} is a partition of ωn consisting of open sets.

Thus, ∅ 6= f −1(r) ⊆ c(A)∩ cB = ∅, which is a contradiction.

Applying the corollary, we have β(ωn) |= χn, or that χn ∈ Ln.
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Thus we have established that

S4.1 ⊆ · · · ⊂ L3 ⊂ L2 ⊂ L1 = S4.1.2

Lemma

The S4.1-frame F depicted below is not an interior image of β(ωn)
for any n ≥ 1: �� ��• •

•
@@

•
��

Thus, χF ∈ L(β(ωn)) for each n ≥ 1. (Proof is similar to previous)

χF 6∈ S4.1 since F is an S4.1-frame, which motivates defining

L∞ =
⋂
n≥1

Ln, and hence

S4.1 ⊂ L∞ ⊂ · · · ⊂ L3 ⊂ L2 ⊂ L1 = S4.1.2



Background The logics Ln Partial solution of P2

On to P2 ...

We now recall a useful representation of a nonzero ordinal.

Definition

Each nonzero ordinal γ can be uniquely written in the Cantor
normal form γ = ωαknk + · · ·+ ωα1n1, where 0 6= k ∈ ω, each ni is
nonzero and finite, and 0 ≤ α1 < · · · < αk are ordinals.

Theorem (Structural Theorem)

For an infinite ordinal γ, we have that β(γ) is homeomorphic to
the disjoint union of a compact ordinal and the Čech-Stone
compactification of a power of ω.
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Proof sketch of structural theorem

We only consider the case when γ is not compact:

Write γ = ωαknk + · · ·+ ωα1n1 in Cantor normal form
(α1 6= 0 as γ is not compact).

“Tear off” one copy of ωα1 from “the top” of γ by writing
γ = γ′ + ωα1

Basic ordinal arithmetic yields that
γ = γ′ + ωα1 = γ′ + (1 + ωα1) = (γ′ + 1) + ωα1

{γ′ + 1, ωα1} is a clopen partition of γ, implying
{γ′ + 1, c(ωα1)} is a clopen partition of β(γ) (as γ′ + 1 is
compact).

c(ωα1) is homeomorphic to β(ωα1).

β(γ) is homeomorphic to the disjoint union (γ′ + 1)⊕ β(ωα1).
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Preparing to use the structural theorem

Definition

S4.Grz is obtained from S4 by postulating the Grzegorczyk axiom

�(�(p → �p)→ p)→ p

S4.Grzn is obtained from S4.Grz by postulating bdn where

bd1 = ♦�p1 → p1

bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1

Theorem (Abashidze-Blass)

Let γ 6= 0 be an ordinal and n ≥ 1.

1 If ωn−1 < γ ≤ ωn , then L(γ) = S4.Grzn.

2 If ωω ≤ γ, then L(γ) = S4.Grz.
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Employing the structural theorem

Let γ be a noncompact infinite ordinal.

Useful fact

If X is the disjoint union Y ⊕ Z , then L(X ) = L(Y ) ∩ L(Z ).

Combining this with the structural theorem yields:

L(β(γ)) = L
(
(γ′ + 1)⊕ β(ωα1)

)
= L(γ′ + 1) ∩ L(β(ωα1))

Thus, when α1 = n is finite we have L(β(γ)) = L(γ′ + 1)∩ Ln, and
using the Abashidze-Blass theorem gives the result.

Example

L(β(ω2)) = L ((ω + 1)⊕ β(ω)) = L(ω+ 1)∩L1 = S4.Grz2∩S4.1.2
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Logics of the form L(β(γ))–a picture
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Figure: Logics arising as L(β(γ)).
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A partial solution of P2–explicit description

Theorem

Each of the following logics arises as L(β(γ)) for some ordinal γ.

1 Lm for each 0 < m < ω.

2 S4.Grz and S4.Grzn for each 0 < n < ω.

3 S4.Grz ∩ Lm and S4.Grzn ∩ Lm for 0 < m < n < ω.

All these logics are depicted by black bullets in the previous figure.

Theorem

Let γ be a nonzero ordinal. If β(γ) is an ordinal or α1 in the
Cantor normal form of γ is finite, then L(β(γ)) is a logic appearing
as a black bullet in the previous figure.

Conjecture

If γ is not compact and α1 ≥ ω in its CNF, then L(β(γ)) = L∞.
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Thank you for your attention ... any questions?

This work is available at: https://doi.org/10.1112/jlms.70090

Upcoming attractions: the axiomatization of L2.
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