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INTRODUCTION

Adopt an algebraic perspective of a topological space X:

(p(X),c) where c: p(X) — p(X) is closure in X

.

KURATOWSKI CLOSURE AXIOMS

ACcA & p—9Op
ccACcA & O0p— Op
c(AUB)=c(A)UcB < O(pVq) <« OpVOgq
c@ =@ < (inference rule of necessitation)

INTERPRETING THE MODAL LANCUAGE: DIAMOND IS CLOSURE

A formula ¢ is valid in X if ¢ evaluates to X for each valuation
assigning a subset to each proposition, written X = .
The logic of X is L(X) = {¢ | X = ¢}; notice S4 C L(X).
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SOME CLASSICAL RESULTS

o [MT44] S4 is the logic of any separable dense-in-itself
metrizable space.

o [RS63] Under the axiom of choice, the M-T theorem above
holds without the separability assumption.

o [BGLB15] The logics arising from metrizable spaces have
been characterized, and include logics other than S4:

S4 CS4.1CS4.Grz C --- C S4.Grzp C S4.Grzy
(these logics are defined subsequently)

How can we move beyond the realm of metrizable spaces?
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A FIRST ANSWER... (VIA KRIPKE SEMANTICS)

@ An S4-frame is an ordered pair § = (W, R) where R is a
quasi-ordering of W that is, R is reflexive and transitive.

o AC W is an R-upset of § if w € A and wRv imply v € A.

@ The collection of R-upsets of § form the Alexandroff topology
7r on W; and closure is given by

cA=R(A):={w]|(3v e AwRv}.

@ For each formula ¢, we have that § | ¢ iff (W, 7g) E ¢.

e Each Kripke complete logic above S4 is topologically
complete, but Alexandroff spaces are typically not metrizable
(since they are rarely Hausdroff).
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A MOTIVATING RESULT FOR A SECOND ANSWER...

[BHO09] The logic of the Cech-Stone compactification 3(w) of the
ordinal space w is S4.1.2, which obtained from S4 by postulating

ma := OOp — OUp and ga := OUp — OOp.

PROOF SKETCH...INDICATING SOME TECHNIQUES
Sound:

e Call X densely discrete (DD) if its isolated points are dense.
If X is DD, then X = O0p — OOp (but not conversely).

e Call X extremally disconnected (ED) if the closure of each
open set is open.
X is ED iff X = O0Op — OOp.

o ((w) is both DD and ED, and thus S4.1.2 C L(5(w)).
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A MOTIVATING RESULT FOR A SECOND ANSWER...

[BHO09] The logic of the Cech-Stone compactification 3(w) of the
ordinal space w is S4.1.2, which obtained from S4 by postulating

ma := OOp — OUp and ga := OUp — UOp.

PROOF SKETCH...INDICATING SOME TECHNIQUES

Complete:
o Key tool: A mapping f : X — Y between spaces is interior if
f is continuous and open, and Y is an interior image of X if f
is onto; we have f~1(cB) = cf~1(B) for each BC Y.
If Y is an interior image of X, then L(X) C L(Y); thus,
Y P~ ¢, then X = ¢ (including the case when Y is an
Alexandroff space of an S4-frame; f~1(R71(B)) = cf~1(B)).
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A MOTIVATING RESULT FOR A SECOND ANSWER...

[BHO09] The logic of the Cech-Stone compactification 3(w) of the
ordinal space w is S4.1.2, which obtained from S4 by postulating

ma := OOp — OUp and ga := OUp — LOp.

PROOF SKETCH...INDICATING SOME TECHNIQUES

Complete:

e Say (W, R) is rooted if there is a root w € W such that
Rw] :={v € W | wRv}.
S4.1.2 is the logic of finite rooted S4-frames that have a
unique maximal point.

o Construct an interior mapping f : B(w) — (W, 7g) for each
such frame (W, R) above; then L(8(w)) C S4.1.2.
The original proof uses set theoretic axioms beyond ZFC, but
Dow has a proof in ZFC.
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SHEHTMAN’S PROBLEMS

Convention: View an ordinal as a topological space by equipping
it with the interval topology induced by its order.

Generalizing the result that L(5(w)) = S4.1.2, Shehtman posed

the following problems:

P1 For each n > 1, axiomatize the modal logic L, := L(8(w")) of
the Cech-Stone compactification 3(w") of the ordinal w".

P2 Describe the logics that arise as the logic of () for an
arbitrary ordinal ~.

As we present a partial solution to P2 we will see that the logics
L, appearing in P1 play a key role in answering P2.
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PRELIMINARIES

SOME KNOWN FACTS ABOUT ORDINALS

o Each ordinal v is locally compact, normal, and scattered.

@ Therefore, 3(7) is a zero-dimensional DD space and 7 is
homeomorphic to an open subspace of (7).

The logic S4.1 is obtained from S4 by postulating LIOp — OUp.

For any ordinal -y, we have that S4.1 C L(3(7)).

ProOOF
B(v) E OOp — O0p since B(7) is DD.
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REALIZING w"

For n > 1, we work with the product space (w” + 1) X w since it is
homeomorphic to the ordinal w"*!, depicted below is B(w?):

w? >~ (w+1) X w

. 2 e e o o --- o 5(w2)\w2
1 e e o o --- o
Qe e o o .- o
e o o °
01 2 w

w+1
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REALIZING w"

For n > 1, we work with the product space (w” + 1) X w since it is
homeomorphic to the ordinal w"*!, depicted below is B(w?):

W (w+1) xw

w 200 T p?) \ W
1l e o o °
Oe o o °
e o o °
01 2 w
w+1

In the red oval is a clopen copy of w in w?.
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For each n > 1 we have that L1 C L,, and hence

S41..-CL3CLyCLy =S41.2

€

PERTINENT KNOWN RESULTS

e If Y is an open subset of X, then L(X) C L(Y).
o Let X be normal and c closure in 3(X).
@ If Yis clopen in X, then c(Y) is clopen in B(X).
@ If Y is closed in X, then c(Y) is a compactification of Y
equivalent to (Y).

PROOF SKETCH

e w" is homeomorphic to a clopen subspace X of w"*1.

o [(w") is equivalent to X, which is clopen in S(w™?).
o Lyt CL(cX) = L,.
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For each n > 1, we have L1 C L.

To prove this we require that each finite rooted S4-frame
§ = (W, R) has its associated Fine-Jankov formula xz encoding §:

TOPOLOGICAL VERSION OF FINE’S RESULT (KNOWN)

For each space X, we have that X |= x; iff § is not an interior
image of any open subspace of X.

Let x, be the Fine-Jankov formula of the partially ordered frame
T, depicted below:
WnI
Wh-16

Wo ¢

w1 v
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For each n > 1, we have L1 C L,.
Whn
Wh-16
X
wi v
r

We have the following proof sketch that y, & L(B(w"*1)):

e T, is an interior image of w"™! (picture proof for w?).

o B(w") £ xn since w™ 1 is homeomorphic to an open subset
of B(w™*1).

@ Xn & Lny1.
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For each n > 1, we have L1 C L.

To prove this we additionally require the following:

If Y and Z are disjoint closed subsets of a normal space X, then
c(Y) and ¢(Z) are disjoint in B(X).

Let X be a zero-dimensional space and § = (W, <) a rooted
S4-frame containing a maximal point m. Then § is an interior
image of X iff § is an interior image of some open subspace of X.

o

COROLLARY

Let n > 1 and § a finite rooted S4-frame. Then f(w") = x5 iff §
is not an interior image of B(w").
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For each n > 1, we have L1 C L,.

e

wm B\ ——

r
We have the following proof sketch that x, € L(8(w")):

@ Assume f : B(w") — T, is an interior mapping. Let A be the
preimage of the red subset in w” and B the preimage of the
blue point in w”.
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For each n > 1, we have L1 C L.
A I T,
n § n n f .
w™ 1B\ W ———
B |

r
We have the following proof sketch that x, € L(8(w")):

@ Assume ¥, is an interior image of 3(w"). Let A be the
preimage of the red subset in w” and B the preimage of the
blue point in w".

e {A, B} is a partition of w" consisting of open sets.
o Thus, @ # f~1(r) C ¢(A)NcB = &, which is a contradiction.
@ Applying the corollary, we have B(w") = xn, or that x, € L.
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Thus we have established that

S4.1g~-CL3CL2CL1:S4.1.2

The S4.1-frame § depicted below is not an interior image of 3(w")

for any n > 1: E{

Thus, x5 € L(B(w")) for each n > 1. (Proof is similar to previous)

Xz & S4.1 since § is an S4.1-frame, which motivates defining

Lo = ﬂ L,,, and hence

n>1

S41CLeC---ClgClyClL;=541.2
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ON 1O P2 ...

We now recall a useful representation of a nonzero ordinal.

Each nonzero ordinal v can be uniquely written in the Cantor
normal form v = wny + - - - + w*ny, where 0 # k € w, each n; is
nonzero and finite, and 0 < a1 < - -+ < @ are ordinals.

v

THEOREM (STRUCTURAL THEOREM)

For an infinite ordinal vy, we have that [3(y) is homeomorphic to
the disjoint union of a compact ordinal and the Cech-Stone
compactification of a power of w.
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PROOF SKETCH OF STRUCTURAL THEOREM

We only consider the case when v is not compact:

o Write v = w®ng 4 - - - + w*ny in Cantor normal form
(a1 # 0 as y is not compact).

o “Tear off” one copy of w® from "“the top” of v by writing
y=7"+wn

e Basic ordinal arithmetic yields that
T=Atwm =+ (1w =+ )+

e {7 +1,w*} is a clopen partition of 7, implying
{v +1,c(w*)} is a clopen partition of () (as v + 1 is
compact).

e c(w™) is homeomorphic to S(w™).

@ [((v) is homeomorphic to the disjoint union (7' + 1) & S(w™).
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PREPARING TO USE THE STRUCTURAL THEOREM

S4.Grz is obtained from S4 by postulating the Grzegorczyk axiom
O@O(p —0Op) = p) = p
S4.Grz, is obtained from S4.Grz by postulating bd, where

bdi = O0p1 — p1
l'-’dnJrl = O(Danrl A _‘bdn) — Pn+1

THEOREM (ABASHIDZE-BLASS)

Let v # 0 be an ordinal and n > 1.
Q Ifw' 1 <~ <w", then L(y) = S4.Grz,.
Q Ifw®” <, then L(y) = S4.Grz.
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EMPLOYING THE STRUCTURAL THEOREM

Let v be a noncompact infinite ordinal.

If X is the disjoint union Y @ Z, then L(X) = L(Y) N L(Z).

Combining this with the structural theorem yields:

L(B(7) = L((Y +1) & B(w™)) = L(y' + 1) N L(B(w™))

Thus, when a3 = nis finite we have L(3(v)) = L(y' + 1) NL,, and
using the Abashidze-Blass theorem gives the result.

L((w+1)® B(w)) =L(w+1)NLy = S4.Grz;NS4.1.2




Background The logics L, Partial solution of P2
00000000 00000000000 0000®00

LOGICS OF THE FORM L(/3(7))—A PICTURE

L(B(w2)) = S4.Grzo N Ly

S4.GrzN L4
S4.GrzN Ly
S4.GrzN L3
S4.GrzN Ly
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A PARTIAL SOLUTION OF P2-EXPLICIT DESCRIPTION

Each of the following logics arises as L(/3(y)) for some ordinal .
QO L, foreach0 < m< w.
© S4.Grz and S4.Grz, for each 0 < n < w.
@ S4.GrzN Ly, and S4.Grz, NL, for0 < m< n < w.

All these logics are depicted by black bullets in the previous figure.

Let v be a nonzero ordinal. If 3(vy) is an ordinal or a in the
Cantor normal form of v is finite, then L(3(~)) is a logic appearing
as a black bullet in the previous figure.

If v is not compact and a3 > w in its CNF, then L(5(7)) = Leo-
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Thank you for your attention ... any questions?

This work is available at: https://doi.org/10.1112/jIims.70090

Upcoming attractions: the axiomatization of L.
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