Relative Δ_3 Categoricity for Linear Orderings and Enumerative Combinatorics

David Gonzalez

U.C. Berkeley Joint with: Wesley Calvert, Doug Cenzer, Valentina Harizanov, Selwyn Ng

May, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition: A structure \mathcal{M} is relatively Δ_{α} categorical if for any two copies M_1 and M_2 of \mathcal{M} , there is a $\Delta_{\alpha}(M_1, M_2)$ -computable isomorphism between M_1 and M_2 .

Definition: A structure \mathcal{M} is relatively Δ_{α} categorical if for any two copies M_1 and M_2 of \mathcal{M} , there is a $\Delta_{\alpha}(M_1, M_2)$ -computable isomorphism between M_1 and M_2 .

Definition: The categoricity rank of a structure \mathcal{M} is the least α such that \mathcal{M} is relatively Δ_{α} categorical.

Definition: A structure \mathcal{M} is relatively Δ_{α} categorical if for any two copies M_1 and M_2 of \mathcal{M} , there is a $\Delta_{\alpha}(M_1, M_2)$ -computable isomorphism between M_1 and M_2 .

Definition: The **categoricity rank** of a structure \mathcal{M} is the least α such that \mathcal{M} is relatively Δ_{α} categorical.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The categoricity level is closely tied to the **Scott rank** of the structure.

The simplest linear orderings

Natural Question: Given a class of structures, which among this class are the simplest?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The simplest linear orderings

Natural Question: Given a class of structures, which among this class are the simplest?

Theorem: [Remmel] The relatively computably categorical (i.e., categoricity rank 1) linear orderings are exactly those with finitely many successivities. E.g. η , $\eta + 3 + \eta + 2$ etc.

The simplest linear orderings

Natural Question: Given a class of structures, which among this class are the simplest?

Theorem: [Remmel] The relatively computably categorical (i.e., categoricity rank 1) linear orderings are exactly those with finitely many successivities. E.g. η , $\eta + 3 + \eta + 2$ etc.

Theorem: [McCoy] The relatively Δ_2 categorical (i.e., categoricity rank 2) linear orderings are those that are separated, finite sums of

$$\{\omega, \omega^*, \omega + \omega^*, \{k\}_{k \in \omega}, \{k \cdot \eta\}_{k \in \omega}\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem: [Knight, McCoy] Given any $A = \{a_1, a_2, \dots\} \subseteq \omega$, *Sh*(*A*) has categoricity rank 3.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem: [Knight, McCoy] Given any $A = \{a_1, a_2, \dots\} \subseteq \omega$, Sh(A) has categoricity rank 3.

Theorem: [G., Rossegger] There is a computable functional that transforms any computably categorical structure into a linear ordering with categoricity rank 3.

Definition: [Adams, Cenzer] A structure is **weakly homogeneous** if it is homogeneous over a finite list of parameters (i.e. (\mathcal{A}, \bar{p}) is homogeneous)

Definition: [Adams, Cenzer] A structure is **weakly homogeneous** if it is homogeneous over a finite list of parameters (i.e. (\mathcal{A}, \bar{p}) is homogeneous)

Theorem: [Adams, Cenzer] If \mathcal{A} is weakly homogeneous, \mathcal{A} is relatively Δ_2 categorical; if \mathcal{A} is weakly homogeneous and locally finite, \mathcal{A} is relatively computably categorical

Definition: [Adams, Cenzer] A structure is **weakly homogeneous** if it is homogeneous over a finite list of parameters (i.e. (\mathcal{A}, \bar{p}) is homogeneous)

Theorem: [Adams, Cenzer] If \mathcal{A} is weakly homogeneous, \mathcal{A} is relatively Δ_2 categorical; if \mathcal{A} is weakly homogeneous and locally finite, \mathcal{A} is relatively computably categorical

To get further along the hierarchy: Enrich your structure with additional definable relations or functions

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition: A linear ordering is **sp-homogeneous** if it is homogeneous when enriched by s, p.

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

Definition: A linear ordering is **sp-homogeneous** if it is homogeneous when enriched by s, p. It is **weakly sp-homogeneous** if it is weakly homogeneous when enriched by s, p.

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

Definition: A linear ordering is **sp-homogeneous** if it is homogeneous when enriched by s, p. It is **weakly sp-homogeneous** if it is weakly homogeneous when enriched by s, p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples: ω

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

Definition: A linear ordering is **sp-homogeneous** if it is homogeneous when enriched by s, p. It is **weakly sp-homogeneous** if it is weakly homogeneous when enriched by s, p.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Examples: ω , *Sh*(*A*) for $A \subseteq \omega \cup \{\omega, \omega^*, \zeta\}$

Definition: In a linear ordering (L, <) let $s : L \to L$ be defined by s(x) is the successor of x if it exists and x otherwise. $p : L \to L$ is the analagously defined predecessor function.

Definition: A linear ordering is **sp-homogeneous** if it is homogeneous when enriched by s, p. It is **weakly sp-homogeneous** if it is weakly homogeneous when enriched by s, p.

Examples: ω , Sh(A) for $A \subseteq \omega \cup \{\omega, \omega^*, \zeta\}$, $\eta + 2 + 3 \cdot \eta + 4 + 5 \cdot \eta + 6 + 7 \cdot \eta + \cdots$.

Proposition: [CCGHN] All weakly sp-homogeneous linear orderings are relatively Δ_4 categorical.

Proposition: [CCGHN] All relatively Δ_2 categorical linear orderings are weakly sp-homogeneous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition: [CCGHN] All weakly sp-homogeneous linear orderings are relatively Δ_4 categorical.

Proposition: [CCGHN] All relatively Δ_2 categorical linear orderings are weakly sp-homogeneous.

Questions: Which linear orderings are sp-homogeneous? Which sp-homogeneous orderings have categoricity rank 3?

Main Computability results

Theorem: [CCGHN] The copies of sp-homogeneous linear orderings is Π_5^0 complete.

Main Computability results

Theorem: [CCGHN] The copies of sp-homogeneous linear orderings is Π_5^0 complete. The copies of weakly sp-homogeneous linear orderings is Σ_6^0 complete.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Main Computability results

Theorem: [CCGHN] The copies of sp-homogeneous linear orderings is Π_5^0 complete. The copies of weakly sp-homogeneous linear orderings is Σ_6^0 complete.

Theorem: [CCGHN] An sp-homogeneous linear ordering L is relatively Δ_3 categorical if and only if

- 1. It has no intervals of the form Sh(S) where S includes an infinite block and finite blocks of arbitrary size or ζ along with another infinite block.
- If I is ω · η, Sh(ω, ω*), ω* · η or ζ · η or a sum of at least two of those orderings, it has an interval to its left and right in L that only has finite blocks of a bounded size.
- Any ζ · η does not have an interval to its right or left isomorphic to a shuffle sum including an infinite block.

How does this at all relate to enumerative combinatorics?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Structure of sp-homogeneity

Theorem:[CCGHN] All elements in an sp-homogeneous linear ordering either lie in a unique block type or an interval isomorphic to a shuffle sum - block types are not re-used.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Structure of sp-homogeneity

Theorem:[CCGHN] All elements in an sp-homogeneous linear ordering either lie in a unique block type or an interval isomorphic to a shuffle sum - block types are not re-used.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Critical non-examples: $\eta + Sh(1, 2)$, $\eta + 3 + \eta$.

Theorem:[CCGHN] All elements in an sp-homogeneous linear ordering either lie in a unique block type or an interval isomorphic to a shuffle sum - block types are not re-used.

Critical non-examples: $\eta + Sh(1, 2)$, $\eta + 3 + \eta$.

Theorem:[CCGHN] weakly sp-homogeneous linear orderings are finite alternating sums of individual blocks and sp-homogeneous linear orderings.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Transforming sp-homogeneous Orderings

sp-homogeneous linear orderings can be turned into homogeneous colored linear orderings by collapsing the blocks and using colors to remember the block types.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

sp-homogeneous linear orderings can be turned into homogeneous colored linear orderings by collapsing the blocks and using colors to remember the block types.

Homogeneous colored linear orderings can be turned into linear orderings with predicates by collapsing shuffle sums to one point and using predicates to remember which colors were shuffled in

Example 1

Example 2

 $\omega + Sh(y, 2) + \omega *$ Ca # Cw CL Aw* Rw

・ロト・四ト・モート ヨー うへの

Example 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Stronger Homogeneity Notions

Definition: A linear ordering *L* is $C_{n,m}$ homogeneous if when *L* is expanded to included definitions for, $\{S_i\}_{i < n}$, $\{P_j\}_{j < m}$, and $\{Adj_k\}_{k < n+m}$ it becomes homogeneous.

Stronger Homogeneity Notions

Definition: A linear ordering *L* is $C_{n,m}$ homogeneous if when *L* is expanded to included definitions for, $\{S_i\}_{i < n}$, $\{P_j\}_{j < m}$, and $\{Adj_k\}_{k < n+m}$ it becomes homogeneous.

Theorem: [CCGHN] $C_{\infty,\infty}$ homogeneous coincides sp-homogeneous.

Theorem:[CCGHN] $C_{n,m}$ homogeneous depends only on k = m + n + 1 and coincides with homogeneous linear orderings with k colors with no adjacent singletons

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

k = 2

1,2 56(1,2) 2 2.1 1 2+n 1+2.1 1 2 21 Colored 20 n onty. +2 2.7+1 Not Cx 2 I(0)=L(0)=1 2.7+7 J(1)=L(1)=3 n + 2.n I(2)=12jL12]=14

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Question: What is the value of I(k), the number of $C_{n,m}$ homogeneous linear orderings with k = n + m + 1?

Question: What is the value of L(k), the number of homogeneous linear orderings with k colors?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: How do the growth rates compare?

L(k)

Theorem: L(k) are the coefficients in the exponential generating function

$$H(x)=\frac{e^x}{2-x-e^x}.$$

Furthermore,

$$L(k) \sim -k! R\left(\frac{1}{Z}\right)^{k+1},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where $Z = 2 - W(e^2) \approx 0.442854$ and $R = \frac{-e^2}{e^{W(e^2)} + e^2} \approx -0.6089389.$

I(k)

Theorem: Let I(k) be the number of $C_{n,m}$ -homogeneous linear orderings with k = n + m + 1.

$$I(k) = \sum_{m=1}^{k} \binom{k}{m} \sum_{n=1}^{m} \sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n-r+1}{r} \binom{m}{r} r! (n-r)! S(m-r, n-r),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Where S(n, m) are the Stirling numbers of the second kind. Furthermore, $I(k) = O(k!2.123^k)$.

Figure: $H(x) = -x \log_2(x) - (1-x) \log_2(1-x)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)