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Differential Fields

Definition

An ordinary differential field is a pair (K , δ) where K is a field and
δ : K → K is a function such that ∀x , y ∈ K

1 δ(x + y) = δ(x) + δ(y)

2 δ(xy) = δ(x)y + xδ(y)

Example of a partial differential field: (C(x , t, x t , ln(x)), d
dx ,

d
dt ).

We focus on the ordinary (one derivation) case and characteristic 0.
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Model theory of differential fields

The theory of differential fields of char 0 in the language Lδ = Lrings ∪ {δ}
has a model companion, DCF0, the theory of existentially closed
differential fields.

DCF0 has QE, EI, and is totally transcendental.

Every (K , δ) has a subfield of constants CK = {a ∈ K : δ(a) = 0}.

E.g. Let K = (Q(t), d
dt ) then CK = Q.

By total transcendentality of T , every differential field (K , δ) is contained
in prime model of DCF0, (K

diff, δ), which we call the differential closure of
K .
From atomicity of the prime model: CKdiff = (CK )

alg.
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Picard-Vessiot Theory

Let (K , δ) be a differential field. An ordinary linear homogeneous
differential equation (OHDLE) over K is an equation of the form

δ(n)(y) + an−1δ
(n−1)(y) + ...+ a1δ(y) + a0y = 0 ai ∈ K .

For any K ⊂ L and OHLDE Y over K , the solution set Y (L) is a
CL-vector space of dimension at most n.

A fundamental system of solutions to Y is a CL-basis of Y (L), of the
maximal length n, contained in a differential extension L of K .

A Picard-Vessiot (PV) extension L of K is a differential extension
generated by a fundamental system of solutions to an OHDLE over K and
such that CL = CK . In which case Y (L) is a CK -vector space of dim n.

Ex. Let K = (Q, d
dt ) ⊂ (Q(et), d

dt ) = L. Then et is a Q-basis of
V (L) = {cet : c ∈ CL = CK = Q} for δ(y)− y = 0.
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Picard-Vessiot Theory II

Let (K , δ) be and Y be an OHLDE over K .

Fact

If CK = (CK )
alg, then there exists a Picard-Vessiot extension L

intermediate in K ⊆ L ⊆ Kdiff.

Proof.

By the existential closure of Kdiff, one can find n-independent solutions b̄
to Y in Kdiff.

Let L = K ⟨b̄⟩.

Since CKdiff = (CK )
alg, then CL = CK for any intermediate L:

CK ⊆ CL ⊆ CKdiff = (CK )
alg = CK

Existence and uniqueness/multiplicity of Picard-Vessiot extensions is
sensitive to field-arithmetic, model-theoretic, and Galois-cohomological
properties of CK .
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Fundamental Theorem for PV Theory

Theorem (Kolchin 1948+)

Let K ⊂ L = K ⟨b̄⟩ ⊂ Kdiff be a PV extension (not assuming
CK = (CK )

alg). Then there is a linear algebraic group G ⊂ GLn defined
over CK . Satisfying:

1. Aut(L/K ) ∼= G (CK ) The associated “direct” correspondence
between K ⊆ L1 ⊆ L and e ⊆ G1(CK ) ⊆ G (CK ) is partial.

2. Aut(L(CKdiff)/K (CKdiff)) ∼= G (CKdiff)

σ 7→ cσ ∈ GLn(CKdiff) s.t. σ(b̄) = b̄cσ

The “indirect” correspondence: There is a full Galois correspondence
between all CK -definable algebraic subgroups {e} ⊆ G1 ⊆ G and all
intermediate differential fields K ⊆ L1 ⊆ L.

3. The torsor theorem: The realizations of tp(b̄/K (CKdiff)) = tp(b̄/K ) in
Kdiff, Qb̄(K

diff), is a right K -definable torsor for G (CKdiff).
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Early existence theorems for PV extensions
Let Y be an OHDLE over a differential field K .

One can always find a fundamental system b̄ in Kdiff, in which case,
generating L = K ⟨b̄⟩, the associated extension CL/CK is finite.

(Kolchin 1948a): If CK = (CK )
alg, then a PV extension exists for Y in

Kdiff.

(Seidenberg 1956) negative example: Let K = R(α) where α is a
transcendental solution to (2α)2 + (δ(α))2 = −1. Let Y be δ2(y) + y = 0.
For any fundamental system b̄ for Y , L = K ⟨b̄⟩ has CL = C ̸= CK = R.
i.e. K has no PV extension for Y .

(Epstein 1955a): One can always find a fundamental system b̄ for Y , an
OHLDE, such that CL/CK is a Galois extension. (Epstein 1955b): A
partial Galois correspondence is shown for these extensions L = K ⟨b̄⟩ with
CL/CK Galois.
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PV extensions with new algebraic constants

Theorem (M. 2025), Generalizes (Epstein 1955b): Theorem 1.

Let L/K be generated by a fundamental system with CL/CK a finite
algebraic extension. Then Aut(L/K ) ∼= G (CK ) for G a linear algebraic
group defined over CK .

Let L = K ⟨b̄⟩. We have K ⊆ K (CL) ⊆ L. Note K (CL) ⊆ L is PV.

Theorem, (Epstein 1955b): Theorem 9.

If CL/CK is Galois then F is fixed iff F ′ (smallest intermediate field of
L/K (CL) containing F ) is fixed under the direct Galois correspondence and
is Galois over F .

Proposition (M. 2025).

Moreover F ′ is fixed under the direct correspondence if and only if
HF ′(CL) is Zariski dense in HF ′ .
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Internality in DCF0

Let T = DCF0. Let U be a monster model of DCF0 with constant field C.

Let K be a differential field. Let Y and X be K -definable sets.

We say Y is internal to X if Y ⊆ dcl(K ,X ,B) for some small set of
parameters B. By compactness and a standard coding trick there is a
K -definable function and a tuple b̄ from Bn such that f (b̄, x̄) : X n → Y is
surjective.

By definability of types in DCF0 we can replace b̄ with a tuple of elements
of Y n which we call a fundamental system for Y .

The set of such fundamental systems Z is K -definable. Following some
replacements in notation f (b, x̄) : X1 → Z is a bijection for any b ∈ Z .
X1 ⊆ (X n)eq.

We can define a definable groupoid action living on Z and X1 as follows.
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Hrushovski (2004): Binding groupoid

For any b ∈ Z , tp(b/K ,X ) is isolated and definable over a finite tuple d̄
from X .

Let Qd̄ be the set of realizations of the type. There is a
dcl(K , d̄)-definable group Hd̄ ⊂ X1 acting on Qd̄ on the right freely and
transitively.

For any distinct types p1 and p2 of fund. sys. over dcl(K ,X ), and
associated tuples d̄1, d̄2, we define

Hd̄1,d̄2
= {c ∈ X1 : f (b1, c) = b2, b1 |= p1, b2 |= p2}

Additionally, there is a K -definable group H+ acting on the left on each
Qd̄ isomorphically to the action of Aut(Qd̄/dcl(K ,X )). Giving each triple
(H+,Qd̄ ,Hd̄) the structure of a definable biPHS.

Elements b ∈ Qd̄(K
diff), by the definitions, generate generalized strongly

normal extensions exactly when d̄ ∈ X (K ). Then both H+ and Hd̄ are
K -definable and are the intrinsic and extrinsic differential Galois groups of
the extension L/K where L = dcl(K , b) = K ⟨b⟩.
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Epstein’s group in terms of the binding groupoid

An OHLDE Y is internal to the constants “δ(x) = 0”.

In this case, Z (Kdiff) is a right PHS for X1(K
diff) = GLn(CKdiff)

Let L = K ⟨b⟩ for b ∈ Z (Kdiff) with CL = CK (d̄) Galois over CK . We can
find such by Ep55a.

Let Λ be the set of Galois conjugates of d̄ and let H0 be a CK -definable
finite group with H0(CK ) ∼= Gal(CL/CK ).

Theorem (M. 2025).

The group G (CK ) from Ep55b can be recovered from the Galois groupoid:

G (CK ) ∼= (⊔d1,d2∈ΛHd1,d2(CL)× H0(CK ), ∗d̄)

defining (α1, β1) ∗d̄ (α2, β2) := (α1β1(α2), β1β2).
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Relationship to Umemura’s quasi-automorphic extensions

Defn (Umemura 1996):

A finitely generated differential extension L/K in Kdiff is called
quasi-automorphic if L = K ⟨b̄⟩ for some b̄ ∈ X (Kdiff) for X a K -definable
right PHS for G (Cdiff

K ) an algebraic group defined over CK .

Prop (Umemura 1996):

L/K is quasi-automorphic and CL = CK iff K/L is strongly normal. [Easy
to observe although not stated L/K is linear quasi-automorphic with
CL = CK iff L/K is PV.]

Positing: L/K is linear quasi-automorphic with CL/CK Galois iff L/K is an
extension from Epstein55a/b.

Final Remarks. 1. The model (X,G) of a quasi-automorphic extension is
not uniquely determined. 2. Umemura’s automorphic extensions do not
yet have a satisfactory model-theoretic definition, they generalize Hopf
Galois extensions. 3. Umemura has a parameterized version.
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Thank you!
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