Differential Galois theory allowing additional algebraic constants

ASL Model Theory Session May 13th, 2025

David Meretzky (Notre Dame)

DGT with new algebraic constants

Differential Fields

Definition

An ordinary differential field is a pair (K, δ) where K is a field and $\delta: K \to K$ is a function such that $\forall x, y \in K$

$$(x + y) = \delta(x) + \delta(y)$$

$$\delta(xy) = \delta(x)y + x\delta(y)$$

▲ 同 ▶ → 三 ▶

Differential Fields

Definition

An ordinary differential field is a pair (K, δ) where K is a field and $\delta: K \to K$ is a function such that $\forall x, y \in K$

$$(x + y) = \delta(x) + \delta(y)$$

$$\delta(xy) = \delta(x)y + x\delta(y)$$

Example of a partial differential field: $(\mathbb{C}(x, t, x^t, \ln(x)), \frac{d}{dx}, \frac{d}{dt})$.

(四) (三) (三)

Differential Fields

Definition

An ordinary differential field is a pair (K, δ) where K is a field and $\delta: K \to K$ is a function such that $\forall x, y \in K$

$$\delta(x+y) = \delta(x) + \delta(y)$$

$$\delta(xy) = \delta(x)y + x\delta(y)$$

Example of a partial differential field: $(\mathbb{C}(x, t, x^t, \ln(x)), \frac{d}{dx}, \frac{d}{dt})$.

We focus on the ordinary (one derivation) case and characteristic 0.

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

 DCF_0 has QE, EI, and is totally transcendental.

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

 DCF_0 has QE, EI, and is totally transcendental.

Every (K, δ) has a subfield of constants $C_K = \{a \in K : \delta(a) = 0\}$.

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

 DCF_0 has QE, EI, and is totally transcendental.

Every (K, δ) has a subfield of constants $C_K = \{a \in K : \delta(a) = 0\}$.

E.g. Let
$$K = (\mathbb{Q}(t), \frac{d}{dt})$$
 then $C_K = \mathbb{Q}$.

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

 DCF_0 has QE, EI, and is totally transcendental.

Every (K, δ) has a subfield of constants $C_K = \{a \in K : \delta(a) = 0\}$.

E.g. Let
$$K = (\mathbb{Q}(t), \frac{d}{dt})$$
 then $C_K = \mathbb{Q}$.

By total transcendentality of T, every differential field (K, δ) is contained in prime model of DCF₀, $(K^{\text{diff}}, \delta)$, which we call the differential closure of K.

- 本語 医 本 医 医 一 医

The theory of differential fields of char 0 in the language $L_{\delta} = L_{rings} \cup \{\delta\}$ has a model companion, DCF₀, the theory of existentially closed differential fields.

 DCF_0 has QE, EI, and is totally transcendental.

Every (K, δ) has a subfield of constants $C_K = \{a \in K : \delta(a) = 0\}$.

E.g. Let
$$K = (\mathbb{Q}(t), \frac{d}{dt})$$
 then $C_K = \mathbb{Q}$.

By total transcendentality of T, every differential field (K, δ) is contained in prime model of DCF₀, $(K^{\text{diff}}, \delta)$, which we call the differential closure of K.

From atomicity of the prime model: $C_{\mathcal{K}^{diff}} = (C_{\mathcal{K}})^{alg}$.

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

4/14

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

<日

<</p>

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

A fundamental system of solutions to Y is a C_L -basis of Y(L), of the maximal length n, contained in a differential extension L of K.

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

A fundamental system of solutions to Y is a C_L -basis of Y(L), of the maximal length n, contained in a differential extension L of K.

A Picard-Vessiot (PV) extension L of K is a differential extension generated by a fundamental system of solutions to an OHDLE over K and such that $C_L = C_K$.

(1) マン・ション・ (1) マン・

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

A fundamental system of solutions to Y is a C_L -basis of Y(L), of the maximal length n, contained in a differential extension L of K.

A Picard-Vessiot (PV) extension L of K is a differential extension generated by a fundamental system of solutions to an OHDLE over K and such that $C_L = C_K$. In which case Y(L) is a C_K -vector space of dim n.

4/14

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

A fundamental system of solutions to Y is a C_L -basis of Y(L), of the maximal length n, contained in a differential extension L of K.

A Picard-Vessiot (PV) extension L of K is a differential extension generated by a fundamental system of solutions to an OHDLE over K and such that $C_L = C_K$. In which case Y(L) is a C_K -vector space of dim n.

Ex. Let
$$\mathcal{K} = (\mathbb{Q}, \frac{d}{dt}) \subset (\mathbb{Q}(e^t), \frac{d}{dt}) = L.$$

4/14

Let (K, δ) be a differential field. An ordinary linear homogeneous differential equation (OHDLE) over K is an equation of the form

$$\delta^{(n)}(y) + a_{n-1}\delta^{(n-1)}(y) + ... + a_1\delta(y) + a_0y = 0 \qquad a_i \in K.$$

For any $K \subset L$ and OHLDE Y over K, the solution set Y(L) is a C_L -vector space of dimension at most n.

A fundamental system of solutions to Y is a C_L -basis of Y(L), of the maximal length n, contained in a differential extension L of K.

A Picard-Vessiot (PV) extension L of K is a differential extension generated by a fundamental system of solutions to an OHDLE over K and such that $C_L = C_K$. In which case Y(L) is a C_K -vector space of dim n.

Ex. Let
$$K = (\mathbb{Q}, \frac{d}{dt}) \subset (\mathbb{Q}(e^t), \frac{d}{dt}) = L$$
. Then e^t is a \mathbb{Q} -basis of $V(L) = \{ce^t : c \in C_L = C_K = \mathbb{Q}\}$ for $\delta(y) - y = 0$.

4/14

Let (K, δ) be and Y be an OHLDE over K.

3

イロト 不得 トイヨト イヨト

Let (K, δ) be and Y be an OHLDE over K.

Fact

If $C_K = (C_K)^{alg}$, then there exists a Picard-Vessiot extension L intermediate in $K \subseteq L \subseteq K^{diff}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let (K, δ) be and Y be an OHLDE over K.

Fact

If $C_K = (C_K)^{alg}$, then there exists a Picard-Vessiot extension L intermediate in $K \subseteq L \subseteq K^{diff}$.

Proof.

By the existential closure of K^{diff} , one can find *n*-independent solutions \bar{b} to Y in K^{diff} .

Let (K, δ) be and Y be an OHLDE over K.

Fact

If $C_K = (C_K)^{alg}$, then there exists a Picard-Vessiot extension L intermediate in $K \subseteq L \subseteq K^{diff}$.

Proof.

By the existential closure of K^{diff} , one can find *n*-independent solutions \bar{b} to Y in K^{diff} . Let $L = K \langle \bar{b} \rangle$.

Let (K, δ) be and Y be an OHLDE over K.

Fact

If $C_K = (C_K)^{alg}$, then there exists a Picard-Vessiot extension L intermediate in $K \subseteq L \subseteq K^{diff}$.

Proof.

By the existential closure of K^{diff} , one can find *n*-independent solutions \bar{b} to Y in K^{diff} . Let $L = K \langle \bar{b} \rangle$.

Since $C_{K^{\text{diff}}} = (C_K)^{\text{alg}}$, then $C_L = C_K$ for any intermediate L: $C_K \subseteq C_L \subseteq C_{K^{\text{diff}}} = (C_K)^{\text{alg}} = C_K$

Let (K, δ) be and Y be an OHLDE over K.

Fact

If $C_K = (C_K)^{alg}$, then there exists a Picard-Vessiot extension L intermediate in $K \subseteq L \subseteq K^{diff}$.

Proof.

By the existential closure of K^{diff} , one can find *n*-independent solutions \bar{b} to Y in K^{diff} . Let $L = K \langle \bar{b} \rangle$.

Since $C_{K^{\text{diff}}} = (C_K)^{\text{alg}}$, then $C_L = C_K$ for any intermediate L: $C_K \subseteq C_L \subseteq C_{K^{\text{diff}}} = (C_K)^{\text{alg}} = C_K$

Existence and uniqueness/multiplicity of Picard-Vessiot extensions is sensitive to field-arithmetic, model-theoretic, and Galois-cohomological properties of C_{κ} .

▲御▶ ▲ 国▶ ▲ 国▶ …

Theorem (Kolchin 1948+)

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$).

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K .

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

1. Aut $(L/K) \cong G(C_K)$ The associated "direct" correspondence between $K \subseteq L_1 \subseteq L$ and $e \subseteq G_1(C_K) \subseteq G(C_K)$ is partial.

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

1. Aut $(L/K) \cong G(C_K)$ The associated "direct" correspondence between $K \subseteq L_1 \subseteq L$ and $e \subseteq G_1(C_K) \subseteq G(C_K)$ is partial.

2. $\operatorname{Aut}(L(C_{K^{\operatorname{diff}}})/K(C_{K^{\operatorname{diff}}})) \cong G(C_{K^{\operatorname{diff}}})$

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

1. Aut $(L/K) \cong G(C_K)$ The associated "direct" correspondence between $K \subseteq L_1 \subseteq L$ and $e \subseteq G_1(C_K) \subseteq G(C_K)$ is partial.

2. Aut $(L(C_{K^{\text{diff}}})/K(C_{K^{\text{diff}}})) \cong G(C_{K^{\text{diff}}})$ $\sigma \mapsto c_{\sigma} \in GL_n(C_{K^{\text{diff}}}) \text{ s.t. } \sigma(\bar{b}) = \bar{b}c_{\sigma}$

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

1. Aut $(L/K) \cong G(C_K)$ The associated "direct" correspondence between $K \subseteq L_1 \subseteq L$ and $e \subseteq G_1(C_K) \subseteq G(C_K)$ is partial.

2. Aut
$$(L(C_{K^{\text{diff}}})/K(C_{K^{\text{diff}}})) \cong G(C_{K^{\text{diff}}})$$

 $\sigma \mapsto c_{\sigma} \in GL_n(C_{K^{\text{diff}}}) \text{ s.t. } \sigma(\bar{b}) = \bar{b}c_{\sigma}$

The "indirect" correspondence: There is a full Galois correspondence between all C_{K} -definable algebraic subgroups $\{e\} \subseteq G_1 \subseteq G$ and all intermediate differential fields $K \subseteq L_1 \subseteq L$.

Theorem (Kolchin 1948+)

Let $K \subset L = K \langle \overline{b} \rangle \subset K^{\text{diff}}$ be a PV extension (not assuming $C_K = (C_K)^{\text{alg}}$). Then there is a linear algebraic group $G \subset GL_n$ defined over C_K . Satisfying:

1. Aut $(L/K) \cong G(C_K)$ The associated "direct" correspondence between $K \subseteq L_1 \subseteq L$ and $e \subseteq G_1(C_K) \subseteq G(C_K)$ is partial.

2. Aut
$$(L(C_{K^{\text{diff}}})/K(C_{K^{\text{diff}}})) \cong G(C_{K^{\text{diff}}})$$

 $\sigma \mapsto c_{\sigma} \in GL_n(C_{K^{\text{diff}}}) \text{ s.t. } \sigma(\bar{b}) = \bar{b}c_{\sigma}$

The "indirect" correspondence: There is a full Galois correspondence between all C_{K} -definable algebraic subgroups $\{e\} \subseteq G_1 \subseteq G$ and all intermediate differential fields $K \subseteq L_1 \subseteq L$.

3. The torsor theorem: The realizations of $tp(\bar{b}/K(C_{K^{diff}})) = tp(\bar{b}/K)$ in K^{diff} , $Q_{\bar{b}}(K^{diff})$, is a right K-definable torsor for $G(C_{K^{diff}})$.

< /□ > < ∃

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

(Seidenberg 1956) negative example: Let $K = \mathbb{R}(\alpha)$ where α is a transcendental solution to $(2\alpha)^2 + (\delta(\alpha))^2 = -1$.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

(Seidenberg 1956) negative example: Let $K = \mathbb{R}(\alpha)$ where α is a transcendental solution to $(2\alpha)^2 + (\delta(\alpha))^2 = -1$. Let Y be $\delta^2(y) + y = 0$.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

(Seidenberg 1956) negative example: Let $K = \mathbb{R}(\alpha)$ where α is a transcendental solution to $(2\alpha)^2 + (\delta(\alpha))^2 = -1$. Let Y be $\delta^2(y) + y = 0$. For any fundamental system \bar{b} for Y, $L = K \langle \bar{b} \rangle$ has $C_L = \mathbb{C} \neq C_K = \mathbb{R}$. i.e. K has no PV extension for Y.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

(Seidenberg 1956) negative example: Let $K = \mathbb{R}(\alpha)$ where α is a transcendental solution to $(2\alpha)^2 + (\delta(\alpha))^2 = -1$. Let Y be $\delta^2(y) + y = 0$. For any fundamental system \bar{b} for Y, $L = K \langle \bar{b} \rangle$ has $C_L = \mathbb{C} \neq C_K = \mathbb{R}$. i.e. K has no PV extension for Y.

(Epstein 1955a): One can always find a fundamental system \bar{b} for Y, an OHLDE, such that C_L/C_K is a Galois extension.

One can always find a fundamental system \bar{b} in K^{diff} , in which case, generating $L = K \langle \bar{b} \rangle$, the associated extension C_L / C_K is finite.

(Kolchin 1948a): If $C_{\mathcal{K}} = (C_{\mathcal{K}})^{\text{alg}}$, then a PV extension exists for Y in $\mathcal{K}^{\text{diff}}$.

(Seidenberg 1956) negative example: Let $K = \mathbb{R}(\alpha)$ where α is a transcendental solution to $(2\alpha)^2 + (\delta(\alpha))^2 = -1$. Let Y be $\delta^2(y) + y = 0$. For any fundamental system \bar{b} for Y, $L = K \langle \bar{b} \rangle$ has $C_L = \mathbb{C} \neq C_K = \mathbb{R}$. i.e. K has no PV extension for Y.

(Epstein 1955a): One can always find a fundamental system \bar{b} for Y, an OHLDE, such that C_L/C_K is a Galois extension. (Epstein 1955b): A partial Galois correspondence is shown for these extensions $L = K \langle \bar{b} \rangle$ with C_L/C_K Galois.

Theorem (M. 2025), Generalizes (Epstein 1955b): Theorem 1.

Let L/K be generated by a fundamental system with C_L/C_K a finite algebraic extension. Then $\operatorname{Aut}(L/K) \cong G(C_K)$ for G a linear algebraic group defined over C_K .

8/14

Theorem (M. 2025), Generalizes (Epstein 1955b): Theorem 1.

Let L/K be generated by a fundamental system with C_L/C_K a finite algebraic extension. Then $\operatorname{Aut}(L/K) \cong G(C_K)$ for G a linear algebraic group defined over C_K .

Let $L = K \langle \overline{b} \rangle$. We have $K \subseteq K(C_L) \subseteq L$. Note $K(C_L) \subseteq L$ is PV.

8/14

Theorem (M. 2025), Generalizes (Epstein 1955b): Theorem 1.

Let L/K be generated by a fundamental system with C_L/C_K a finite algebraic extension. Then $\operatorname{Aut}(L/K) \cong G(C_K)$ for G a linear algebraic group defined over C_K .

Let
$$L = K \langle \overline{b} \rangle$$
. We have $K \subseteq K(C_L) \subseteq L$. Note $K(C_L) \subseteq L$ is PV.

Theorem, (Epstein 1955b): Theorem 9.

If C_L/C_K is Galois then F is fixed iff F' (smallest intermediate field of $L/K(C_L)$ containing F) is fixed under the direct Galois correspondence and is Galois over F.

く 何 ト く ヨ ト く ヨ ト

Theorem (M. 2025), Generalizes (Epstein 1955b): Theorem 1.

Let L/K be generated by a fundamental system with C_L/C_K a finite algebraic extension. Then $\operatorname{Aut}(L/K) \cong G(C_K)$ for G a linear algebraic group defined over C_K .

Let
$$L = K \langle \overline{b} \rangle$$
. We have $K \subseteq K(C_L) \subseteq L$. Note $K(C_L) \subseteq L$ is PV.

Theorem, (Epstein 1955b): Theorem 9.

If C_L/C_K is Galois then F is fixed iff F' (smallest intermediate field of $L/K(C_L)$ containing F) is fixed under the direct Galois correspondence and is Galois over F.

Proposition (M. 2025).

Moreover F' is fixed under the direct correspondence if and only if $H_{F'}(C_L)$ is Zariski dense in $H_{F'}$.

э

イロト イボト イヨト イヨト

8/14

Let $T = \mathsf{DCF}_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} .

イロト 不得 トイヨト イヨト

3

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

We say Y is internal to X if $Y \subseteq dcl(K, X, B)$ for some small set of parameters B.

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

We say Y is internal to X if $Y \subseteq dcl(K, X, B)$ for some small set of parameters B. By compactness and a standard coding trick there is a K-definable function and a tuple \overline{b} from B^n such that $f(\overline{b}, \overline{x}) : X^n \to Y$ is surjective.

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

We say Y is internal to X if $Y \subseteq dcl(K, X, B)$ for some small set of parameters B. By compactness and a standard coding trick there is a K-definable function and a tuple \overline{b} from B^n such that $f(\overline{b}, \overline{x}) : X^n \to Y$ is surjective.

By definability of types in DCF₀ we can replace \overline{b} with a tuple of elements of Y^n which we call a fundamental system for Y.

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

We say Y is internal to X if $Y \subseteq dcl(K, X, B)$ for some small set of parameters B. By compactness and a standard coding trick there is a K-definable function and a tuple \overline{b} from B^n such that $f(\overline{b}, \overline{x}) : X^n \to Y$ is surjective.

By definability of types in DCF₀ we can replace \overline{b} with a tuple of elements of Y^n which we call a fundamental system for Y.

The set of such fundamental systems Z is K-definable. Following some replacements in notation $f(b, \bar{x}) : X_1 \to Z$ is a bijection for any $b \in Z$. $X_1 \subseteq (X^n)^{eq}$.

9/14

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Let $T = DCF_0$. Let \mathcal{U} be a monster model of DCF_0 with constant field \mathcal{C} . Let K be a differential field. Let Y and X be K-definable sets.

We say Y is internal to X if $Y \subseteq dcl(K, X, B)$ for some small set of parameters B. By compactness and a standard coding trick there is a K-definable function and a tuple \overline{b} from B^n such that $f(\overline{b}, \overline{x}) : X^n \to Y$ is surjective.

By definability of types in DCF₀ we can replace \overline{b} with a tuple of elements of Y^n which we call a fundamental system for Y.

The set of such fundamental systems Z is K-definable. Following some replacements in notation $f(b, \bar{x}) : X_1 \to Z$ is a bijection for any $b \in Z$. $X_1 \subseteq (X^n)^{eq}$.

We can define a definable groupoid action living on Z and X_1 as follows.

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X.

< 回 > < 回 > < 回 >

э

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X. Let $Q_{\overline{d}}$ be the set of realizations of the type.

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X. Let $Q_{\overline{d}}$ be the set of realizations of the type. There is a $dcl(K, \overline{d})$ -definable group $H_{\overline{d}} \subset X_1$ acting on $Q_{\overline{d}}$ on the right freely and transitively.

く 何 ト く ヨ ト く ヨ ト

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X. Let $Q_{\overline{d}}$ be the set of realizations of the type. There is a $dcl(K, \overline{d})$ -definable group $H_{\overline{d}} \subset X_1$ acting on $Q_{\overline{d}}$ on the right freely and transitively.

For any distinct types p_1 and p_2 of fund. sys. over dcl(K, X), and associated tuples \bar{d}_1 , \bar{d}_2 , we define

$$H_{\bar{d}_1,\bar{d}_2} = \{c \in X_1 : f(b_1,c) = b_2, \ b_1 \models p_1, \ b_2 \models p_2\}$$

くぼう くほう くほう

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X. Let $Q_{\overline{d}}$ be the set of realizations of the type. There is a $dcl(K, \overline{d})$ -definable group $H_{\overline{d}} \subset X_1$ acting on $Q_{\overline{d}}$ on the right freely and transitively.

For any distinct types p_1 and p_2 of fund. sys. over dcl(K, X), and associated tuples \bar{d}_1 , \bar{d}_2 , we define

$$H_{\bar{d}_1,\bar{d}_2} = \{c \in X_1 : f(b_1,c) = b_2, \ b_1 \models p_1, \ b_2 \models p_2\}$$

Additionally, there is a K-definable group H^+ acting on the left on each $Q_{\bar{d}}$ isomorphically to the action of Aut $(Q_{\bar{d}}/\text{dcl}(K, X))$. Giving each triple $(H^+, Q_{\bar{d}}, H_{\bar{d}})$ the structure of a definable biPHS.

- 本語 医 本 医 医 一 医

For any $b \in Z$, tp(b/K, X) is isolated and definable over a finite tuple \overline{d} from X. Let $Q_{\overline{d}}$ be the set of realizations of the type. There is a $dcl(K, \overline{d})$ -definable group $H_{\overline{d}} \subset X_1$ acting on $Q_{\overline{d}}$ on the right freely and transitively.

For any distinct types p_1 and p_2 of fund. sys. over dcl(K, X), and associated tuples \bar{d}_1 , \bar{d}_2 , we define

$$H_{\bar{d}_1,\bar{d}_2} = \{ c \in X_1 : f(b_1,c) = b_2, \ b_1 \models p_1, \ b_2 \models p_2 \}$$

Additionally, there is a K-definable group H^+ acting on the left on each $Q_{\bar{d}}$ isomorphically to the action of Aut $(Q_{\bar{d}}/\text{dcl}(K, X))$. Giving each triple $(H^+, Q_{\bar{d}}, H_{\bar{d}})$ the structure of a definable biPHS.

Elements $b \in Q_{\bar{d}}(K^{\text{diff}})$, by the definitions, generate generalized strongly normal extensions exactly when $\bar{d} \in X(K)$. Then both H^+ and $H_{\bar{d}}$ are *K*-definable and are the intrinsic and extrinsic differential Galois groups of the extension L/K where $L = \operatorname{dcl}(K, b) = K\langle b \rangle$.

An OHLDE Y is internal to the constants " $\delta(x) = 0$ ".

(1) マン・ション (1) マン・ション (1)

3

An OHLDE Y is internal to the constants " $\delta(x) = 0$ ".

In this case, $Z(K^{\text{diff}})$ is a right PHS for $X_1(K^{\text{diff}}) = GL_n(C_{K^{\text{diff}}})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An OHLDE Y is internal to the constants " $\delta(x) = 0$ ".

In this case, $Z(K^{\text{diff}})$ is a right PHS for $X_1(K^{\text{diff}}) = GL_n(C_{K^{\text{diff}}})$

Let $L = K \langle b \rangle$ for $b \in Z(K^{\text{diff}})$ with $C_L = C_K(\bar{d})$ Galois over C_K . We can find such by Ep55a.

イロト 不得下 イヨト イヨト 二日

An OHLDE Y is internal to the constants " $\delta(x) = 0$ ".

In this case, $Z(K^{\text{diff}})$ is a right PHS for $X_1(K^{\text{diff}}) = GL_n(C_{K^{\text{diff}}})$

Let $L = K \langle b \rangle$ for $b \in Z(K^{\text{diff}})$ with $C_L = C_K(\bar{d})$ Galois over C_K . We can find such by Ep55a.

Let Λ be the set of Galois conjugates of \overline{d} and let H_0 be a C_K -definable finite group with $H_0(C_K) \cong \text{Gal}(C_L/C_K)$.

11/14

- 本語 医 本 医 医 一 医

An OHLDE Y is internal to the constants " $\delta(x) = 0$ ".

In this case, $Z(K^{\text{diff}})$ is a right PHS for $X_1(K^{\text{diff}}) = GL_n(C_{K^{\text{diff}}})$

Let $L = K \langle b \rangle$ for $b \in Z(K^{\text{diff}})$ with $C_L = C_K(\bar{d})$ Galois over C_K . We can find such by Ep55a.

Let Λ be the set of Galois conjugates of \overline{d} and let H_0 be a C_K -definable finite group with $H_0(C_K) \cong \text{Gal}(C_L/C_K)$.

Theorem (M. 2025).

The group $G(C_{\kappa})$ from Ep55b can be recovered from the Galois groupoid:

$$G(C_{\mathcal{K}}) \cong (\sqcup_{d_1, d_2 \in \Lambda} H_{d_1, d_2}(C_L) \times H_0(C_{\mathcal{K}}), *_{\bar{d}})$$

defining $(\alpha_1, \beta_1) *_{\bar{d}} (\alpha_2, \beta_2) := (\alpha_1 \beta_1(\alpha_2), \beta_1 \beta_2).$

3

イロト 不得 トイヨト イヨト

Defn (Umemura 1996):

A finitely generated differential extension L/K in K^{diff} is called quasi-automorphic if $L = K \langle \bar{b} \rangle$ for some $\bar{b} \in X(K^{\text{diff}})$ for X a K-definable right PHS for $G(C_K^{\text{diff}})$ an algebraic group defined over C_K .

Defn (Umemura 1996):

A finitely generated differential extension L/K in K^{diff} is called quasi-automorphic if $L = K \langle \bar{b} \rangle$ for some $\bar{b} \in X(K^{\text{diff}})$ for X a K-definable right PHS for $G(C_K^{\text{diff}})$ an algebraic group defined over C_K .

Prop (Umemura 1996):

L/K is quasi-automorphic and $C_L = C_K$ iff K/L is strongly normal. [Easy to observe although not stated L/K is linear quasi-automorphic with $C_L = C_K$ iff L/K is PV.]

(人間) トイヨト イヨト ニヨ

Defn (Umemura 1996):

A finitely generated differential extension L/K in K^{diff} is called quasi-automorphic if $L = K \langle \bar{b} \rangle$ for some $\bar{b} \in X(K^{\text{diff}})$ for X a K-definable right PHS for $G(C_K^{\text{diff}})$ an algebraic group defined over C_K .

Prop (Umemura 1996):

L/K is quasi-automorphic and $C_L = C_K$ iff K/L is strongly normal. [Easy to observe although not stated L/K is linear quasi-automorphic with $C_L = C_K$ iff L/K is PV.]

Positing: L/K is linear quasi-automorphic with C_L/C_K Galois iff L/K is an extension from Epstein55a/b.

イロト イヨト イヨト 一座

Defn (Umemura 1996):

A finitely generated differential extension L/K in K^{diff} is called quasi-automorphic if $L = K \langle \bar{b} \rangle$ for some $\bar{b} \in X(K^{\text{diff}})$ for X a K-definable right PHS for $G(C_K^{\text{diff}})$ an algebraic group defined over C_K .

Prop (Umemura 1996):

L/K is quasi-automorphic and $C_L = C_K$ iff K/L is strongly normal. [Easy to observe although not stated L/K is linear quasi-automorphic with $C_L = C_K$ iff L/K is PV.]

Positing: L/K is linear quasi-automorphic with C_L/C_K Galois iff L/K is an extension from Epstein55a/b.

Final Remarks. 1. The model (X,G) of a quasi-automorphic extension is not uniquely determined. 2. Umemura's automorphic extensions do not yet have a satisfactory model-theoretic definition, they generalize Hopf Galois extensions. 3. Umemura has a parameterized version $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

David Meretzky (Notre Dame)

DGT with new algebraic constants

5/13/25

12/14

Thank you!

ヘロト 人間 とくほとくほとう

3

Selected references

- (Epstein 1955a) M. P. Epstein. An Existence Theorem in the Algebraic Study of Homogeneous Linear Ordinary Differential Equations. Proceedings of the American Mathematical Society, 6(1):33–41, 1955.
- (Epstein 1955b) M. P. Epstein. On the theory of Picard-Vessiot extensions. Annals of Mathematics, 62(3):528–547, 1955.
- (Kolchin 1948a) E. R. Kolchin. Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations. Bulletin of the American Mathematical Society, 54(10):927–932, 1948.
- (Kolchin 1948b) E. R. Kolchin. Algebraic Matric Groups and the Picard-Vessiot Theory of Homogeneous Linear Ordinary Differential Equations. Annals of Mathematics, 49(1):1–42, 1948.
- A. Seidenberg. Contribution to the Picard-Vessiot theory of homogeneous linear differential equations. American Journal of Mathematics, 78(4):808–818, 1956.
- H. Umemura. Galois theory of algebraic and differential equations. Nagoya Mathematical Journal, 144:1-58, 1996.

< 日 > < 同 > < 三 > < 三 > <