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The Lovasz Local Lemma

The Lovasz Local Lemma (the LLL) is a powerful probabilistic tool.
¢ Introduced by ERDGS and LOVASZ in ’75.
o Useful for proving existence results.
¢ Used throughout combinatorics.

» Recently found a number of applications in other areas
(topological dynamics, ergodic theory, descriptive set theory).

This talk is about using the LLL for Borel constructions.
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Framework: Constraint Satisfaction Problems

Constraint satisfaction problem (CSP) is ’ IM=(V,A, ¢ ,dom, %) ‘:

o V, A, and € are sets of variables, labels, and constraints,
o for each constraint ¢ € €:

o dom(c) € V is a finite set, the domain of ¢,

o B(c) € N°omO jg the set of bad labelings of dom(c).

N ={e, e}

dom(c)
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Framework: Constraint Satisfaction Problems

Constraint satisfaction problem (CSP) is ’ IM=(V,A, ¢ ,dom, %) ‘:

o V, A, and € are sets of variables, labels, and constraints,
o for each constraint ¢ € €:

o dom(c) € V is a finite set, the domain of ¢,

o B(c) € N°omO jg the set of bad labelings of dom(c).

N ={e, e}

dom(c) ¥ (good)
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Framework: Constraint Satisfaction Problems

Constraint satisfaction problem (CSP) is ’ IM=(V,A, ¢ ,dom, %) ‘:

o V, A, and € are sets of variables, labels, and constraints,
o for each constraint ¢ € €:

o dom(c) € V is a finite set, the domain of ¢,

o B(c) € N°omO jg the set of bad labelings of dom(c).

N ={e, e}

dom(c) € %AB(c) (bad)
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Framework: Constraint Satisfaction Problems

Constraint satisfaction problem (CSP) is ’ IM=(V,A, ¢ ,dom, %) ‘:

o V, A, and € are sets of variables, labels, and constraints,
o for each constraint ¢ € €:

o dom(c) € V is a finite set, the domain of ¢,

o B(c) € N°omO jg the set of bad labelings of dom(c).

¢ ¢
N ={e, e}
|74
domy(c)
A solution to IT: alabeling f: V — A s.t. flgom() & %B(c) Vce €. )
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Example: sinkless orientation

Let G be alocally finite graph. An orientation of G is sinkless if it has
no sinks, i.e., vertices with outdegree 0.
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Example: sinkless orientation

Let G be alocally finite graph. An orientation of G is sinkless if it has
no sinks, i.e., vertices with outdegree 0.

A sinkless orientation of G is a solution to a CSP with

e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 %(x) = {the unique labeling of dom(x) making x a sink}.
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More definitions (sorry!)

LetII=(V,A,¢,dom, %) be a CSP.

Dependency graph Dry:
« V(D) =¢,
o E(Dn) :={{c,c'} : ¢ # ¢ and dom(c) ndom(c') # @}

¢ D ¢

dom(c)
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More definitions (sorry!)

LetII=(V,A,¢,dom, %) be a CSP.

Dependency graph Dry:
e V(Dp):=¢,
e E(Dp):={{c, '} : ¢ # ¢’ and dom(c) ndom(c') # @}

¢ Dn ()8

domy(c)

We also need some extra structure:

(A,P) is a probability space s.t. each 28(c) is P4°™)_measurable. )
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More definitions (sorry!)

LetII=(V,A,¢,dom, %) be a CSP.

Dependency graph Dry:
e V(Dp):=¢€,
o E(Dn) :={{c,c'} : ¢ # ¢ and dom(c) ndom(c') # @}

¢ Dn ¢
14
dom(c)
We also need some extra structure:
(A,P) is a probability space s.t. each 28(c) is P-measurable. )
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Finally, the Local Lemma

Theorem (ERDOS—-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

Then IT has a solution.

.
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Finally, the Local Lemma

Theorem (ERDOS—-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:
e P[HB()]<spforallced,

Then IT has a solution.

.
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Finally, the Local Lemma

Theorem (ERDOS-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

e P[HB()]<spforallced,

o the maximum degree of Dy is < d, and

Then IT has a solution.

.
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Finally, the Local Lemma

Theorem (ERDOS-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

e P[HB()]<spforallced,

o the maximum degree of Dy is < d, and

e le-p-(d+1)<1| e=2.71828...

Then IT has a solution.

.
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Example: sinkless orientation

Say G is a A-regular graph. Want to find a sinkless orientation of G.

A sinkless orientation of G is a solution to a CSP with
e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 9B(x) = {the unique labeling of dom(x) making x a sink}.
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Say G is a A-regular graph. Want to find a sinkless orientation of G.

A sinkless orientation of G is a solution to a CSP with
e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 9B(x) = {the unique labeling of dom(x) making x a sink}.

Take P to be the uniform measure on {+, —}.
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Example: sinkless orientation

Say G is a A-regular graph. Want to find a sinkless orientation of G.

A sinkless orientation of G is a solution to a CSP with
e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 9B(x) = {the unique labeling of dom(x) making x a sink}.

Take P to be the uniform measure on {+, —}.

Since G is A-regular, we can take

d=A and p=27"4

Anton Bernshteyn Borel Local Lemma



Example: sinkless orientation

Say G is a A-regular graph. Want to find a sinkless orientation of G.

A sinkless orientation of G is a solution to a CSP with
e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 9B(x) = {the unique labeling of dom(x) making x a sink}.

Take P to be the uniform measure on {+, —}.

Since G is A-regular, we can take

d=A and p=27"4

Since|ep(d+1) |= 2 2(A +1) < 1forall A > 4, we conclude:
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Example: sinkless orientation

Say G is a A-regular graph. Want to find a sinkless orientation of G.

A sinkless orientation of G is a solution to a CSP with
e V=E(G), €=V(G), A={+,-} (coding the direction of an edge),
where for each x € V(G):

 dom(x) = {edges incident to x},

 9B(x) = {the unique labeling of dom(x) making x a sink}.

Take P to be the uniform measure on {+, —}.

Since G is A-regular, we can take

d=A and p=27"4

Since|ep(d+1) |= 2 2(A +1) < 1forall A > 4, we conclude:

If A =4, G has a sinkless orientation. )
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Example: sinkless orientation

Remarks:
o Very flexible: the exact nature of the problem is irrelevant.

o There is a “slack” in the ep(d + 1) < 1 bound.
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Example: sinkless orientation

Remarks:
o Very flexible: the exact nature of the problem is irrelevant.

o There is a “slack” in the ep(d + 1) < 1 bound.

Downside: Nonconstructive!

Theorem (THORNTON ’20)

For any A € N, there exists a A-regular Borel graph G with no Borel
sinkless orientation. ®
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Powerful assumption: Subexponential growth

From now on, all CSPs are Borel (V, A, and ¢ are standard Borel
spaces and dom and 28 are Borel in the natural sense).

When does a Borel CSP have a Borel solution? J
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Powerful assumption: Subexponential growth

From now on, all CSPs are Borel (V, A, and ¢ are standard Borel
spaces and dom and 28 are Borel in the natural sense).

When does a Borel CSP have a Borel solution? J

Let G be a locally finite graph.

Growth function: Yc(R) = sup |Bg(x,R)|
X€V(G)

Exponential growth rate:  egr(G) := lim VYG(R)
—00

The graph G is of subexponential growth if egr(G) = 1. )
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Powerful assumption: Subexponential growth

Theorem (ERDOS—LOVASZ ’75): the Lovasz Local Lemma

Suppose there exist p € (0,1), d € N such that:
P[#(c)] < pVce €, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.
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Powerful assumption: Subexponential growth

Theorem (ERDOS—LOVASZ ’75): the Lovasz Local Lemma

Suppose there exist p € (0,1), d € N such that:
P[#(c)] < pVce €, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

(some technical assumption)

If Dy is ‘ of subexponential growth ‘, then IT has a Borel solution.
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Powerful assumption: Subexponential growth

Theorem (ERDOS—LOVASZ ’75): the Lovasz Local Lemma

Suppose there exist p € (0,1), d € N such that:
P[#(c)] < pVce €, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)

Suppose there exist p € (0,1), d € N as in the LLL.

(some technical assumption)

If Dy is ‘ of subexponential growth ‘, then IT has a Borel solution.

For example, this implies the following for A = 4:

Theorem (THORNTON ’20)

If A = 3, every Borel A-regular graph G of subexponential growth
has a Borel sinkless orientation.
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Powerful assumption: Subexponential growth

Theorem (ERDOS—-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

P[A()l<pVcel€, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.

Theorem (CSOKA—GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

(some technical assumption)

If Dpis ‘ of subexponential growth ‘, then IT has a Borel solution.

Lots of applications!

Theorem (AB-YU ’25): Uses the CGMPT Borel LLL
Borel graphs of polynomial growth are hyperfinite.
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Powerful assumption: Subexponential growth

Theorem (ERDOS—-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

P[A()l<pVcel€, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.

Theorem (CSOKA—GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

() Assume that sup e |dom(c)| and [A| are finite.

If Dpis ‘ of subexponential growth ‘, then IT has a Borel solution.
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Powerful assumption: Subexponential growth
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If Dpis ‘ of subexponential growth ‘, then IT has a Borel solution.

Condition () typically holds in applications.
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Powerful assumption: Subexponential growth

Theorem (ERDOS—-LOVASZ ’75): the Lovasz Local Lemma
Suppose there exist p € (0,1), d € N such that:

P[A()l<pVcel€, max.deg.of Dpis<d, ande-p-(d+1)<1.

Then IT has a solution.

Theorem (CSOKA—GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

() Assume that sup e |dom(c)| and [A| are finite.

If Dpis ‘ of subexponential growth ‘, then IT has a Borel solution.

Condition () typically holds in applications.
But do we really need it?..

Anton Bernshteyn Borel Local Lemma



A refinement

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

Assume that A is finite and P is the uniform measure on A.
Assume further that there exist A € Nand € > 0 s.t.:

o sup.eldom(c)| <A and sup,cy, ldom™!(x)| <A,

e egr(Dp) < (1+¢€)%3.

Ifle-p-(d+1)-|AI** <1 then IT has a Borel solution.
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A refinement

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

Assume that A is finite and P is the uniform measure on A.

Assume further that there exist Ae Nand € > 0 s.t.
o sup.eldom(c)| <A and sup,cy, ldom™!(x)| <A,
e egr(Dp) < (1+¢)%/3.

Ifle-p-(d+1)-|AI** <1 then IT has a Borel solution.

This can be applied when D is of slow exponential growth. ..
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A refinement

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

Assume that A is finite and P is the uniform measure on A.
Assume further that there exist A € Nand € > 0 s.t.:

o sup.eldom(c)| <A and sup,cy, ldom™!(x)| <A,

e egr(Dp) < (1+¢)?/3.

Ifle-p-(d+1)-|AI** <1 then IT has a Borel solution.

This can be applied when D is of slow exponential growth. ..
...but the base of the exponent depends on |A| (and A)
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A refinement

Theorem (CSOKA-GRABOWSKI-MATHE-PIKHURKO-TYROS)
Suppose there exist p € (0,1), d € N as in the LLL.

Assume that A is finite and P is the uniform measure on A.
Assume further that there exist A € Nand € > 0 s.t.:

o sup.eldom(c)| <A and sup,cy, ldom™!(x)| <A,

e egr(Dp) < (1+¢)?/3.

Ifle-p-(d+1)-|AI** <1 then IT has a Borel solution.

This can be applied when D is of slow exponential growth. ..
...but the base of the exponent depends on |A| (and A)

In particular, this can only be used when egr(Dpy) < 2%/3 = 1.587.....
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We prove a Borel version of the LLL under less restrictive growth
assumptions and with no restrictions on A:

Theorem (AB-YU)

Suppose there exist p € (0,1), d € N as in the LLL.

Assume further that egr(Dy) < s for some s > 1.

If p-(e-(d +1))° < 1| then IT has a Borel solution.

The growth rate bound only depends on p and d.
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We prove a Borel version of the LLL under less restrictive growth
assumptions and with no restrictions on A:

Theorem (AB-YU)

Suppose there exist p € (0,1), d € N as in the LLL.

Assume further that egr(Dy) < s for some s > 1.

If p-(e-(d +1))° < 1| then IT has a Borel solution.

The growth rate bound only depends on p and d.

Corollary (AB-YU)

Suppose there exist p€ (0,1), d e Nasinthe LLL (soe-p-(d+1) < 1).

If Dy is of subexponential growth, then IT has a Borel solution.
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Example: Borel sinkless orientations

Theorem (THORNTON ’20)

If A = 3, every Borel A-regular graph G of subexponential growth
has a Borel sinkless orientation.
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Example: Borel sinkless orientations

Theorem (THORNTON ’20)

If A = 3, every Borel A-regular graph G of subexponential growth
has a Borel sinkless orientation.

Our result further implies that:

egr(G) < —> aBorel sinkless orientation. J

log, A
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Proof overview

(1) Moser-Tardos Algorithm: a randomized procedure to find a
solution under the LLL assumptions

(2) Problem: The MTA requires too much randomness!

o CGMPT: Randomness conservation: use the same
random input multiple times

(3) Our solution: Probability boosting

Anton Bernshteyn Borel Local Lemma



Moser-Tardos Algorithm

We are given a CSP IT = (V, A, €,dom, 98), want a solution.

Moser-Tardos Algorithm

Sample the initial value f(x) € A for each x € V independently.

While at least one constraint is violated do:

o Pick a violated constraint c € &

o Resample f on dom(c)

A=fo,0}

bad = constant

Anton Bernshteyn
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Moser-Tardos Algorithm

We are given a CSP IT = (V, A, €,dom, 98), want a solution.

Moser-Tardos Algorithm

Sample the initial value f(x) € A for each x € V independently.

While at least one constraint is violated do:
o Pick a violated constraint c € &

o Resample f on dom(c)

A=fo,0}

bad = constant

L 14

MOSER-TARDOS '10: If ep(d + 1) < 1, then every variable x € V gets
resampled finitely many times with probability 1. J
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Moser-Tardos Algorithm

We are given a CSP IT = (V, A, €,dom, 98), want a solution.

Moser-Tardos Algorithm

Sample the initial value f(x) € A for each x € V independently.

While at least one constraint is violated do:
o Pick a violated constraint ¢ € € (adversarially)

o Resample f on dom(c)

A=fo,0}

bad = constant

< |4

MOSER-TARDOS '10: If ep(d + 1) < 1, then every variable x € V gets
resampled finitely many times with probability 1. J
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Moser-Tardos Algorithm: Borel version

Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (t(x,0),7(x, 1),...).

A counter ¢(x) keeps track of the position of x’s current label.

¢
N ={e,0}
bad = constant
%4
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] T
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Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (t(x,0),7(x, 1),...).

A counter ¢(x) keeps track of the position of x’s current label.

¢
A ={e, e}
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Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (t(x,0),7(x, 1),...).

A counter ¢(x) keeps track of the position of x’s current label.

¢
A ={e, e}
bad = constant
L \%4
e Do e Do ° ° ° °
T
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Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (t(x,0),7(x, 1),...).

A counter ¢(x) keeps track of the position of x’s current label.
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Moser-Tardos Algorithm: Borel version

Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (7(x,0),7(x,1),...).

A counter ¢(x) keeps track of the position of x’s current label.

If ¢(x) eventually stabilizes, then we can define

f(x) := 7(x, eventual value of £(x)).
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Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (7(x,0),7(x,1),...).

A counter ¢(x) keeps track of the position of x’s current label.

If ¢(x) eventually stabilizes, then we can define
f(x) := 7(x, eventual value of £(x)).

If T is Borel and f is defined everywhere, then f is a Borel solution!
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Moser-Tardos Algorithm: Borel version

Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (7(x,0),7(x,1),...).

A counter ¢(x) keeps track of the position of x’s current label.

If ¢(x) eventually stabilizes, then we can define
f(x) := 7(x, eventual value of £(x)).

If T is Borel and f is defined everywhere, then f is a Borel solution!

MT’10: If 7 ~PV, then Vx, f(x) exists with prob. 1.
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Moser-Tardos Algorithm: Borel version

Let 7: V — AN be a function, which we call a table.

Instead of random sampling, we look up labels for each x € V in the
corresponding string 7(x) = (7(x,0),7(x,1),...).

A counter ¢(x) keeps track of the position of x’s current label.

If ¢(x) eventually stabilizes, then we can define
f(x) := 7(x, eventual value of £(x)).

If T is Borel and f is defined everywhere, then f is a Borel solution!

MT '10: If  ~ PV, then Vx, f(x) exists with prob. 1. Not Borel! ® )
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Finding a table that works

Goal: Find a Borel table 7 such that MTA(7) converges everywhere. J
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Finding a table that works

Goal: Find a Borel table 7 such that MTA(7) converges everywhere. J

CGMPT: Partition V into “sparse” Borel sets V1, ..., Vi and, for each
1 <i < k, use the same random values for all x € V;.

Anton Bernshteyn Borel Local Lemma



Finding a table that works

Goal: Find a Borel table 7 such that MTA(7) converges everywhere. J

CGMPT: Partition V into “sparse” Borel sets V1, ..., Vi and, for each
1 <i < k, use the same random values for all x € V;.

Our approach: Reduce the problem to a different CSP, with much,
much better parameters! J
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Finding a table that works

Suppose there exist p € (0,1), d € N as in the LLL.

Assume that there exists s > 1 s.t.:
e egr(Dp) <s,
e p-(e-(d+1)°<1.
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Finding a table that works

Suppose there exist p € (0,1), d € N as in the LLL.

Assume that there exists s > 1 s.t.:
e egr(Dp) <s,
e p-(e-(d+1)°<1.

Then, for any parameter N € N, there exists a Borel CSP
Iy = (V, AV, ¢, dom’, %By)

such thatif 7: V — AN is a solution to [Ty, then in the Moser-Tardos
Algorithm with table 7, each variable is resampled < N times ©
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Then, for any parameter N € N, there exists a Borel CSP
Iy = (V, AV, ¢, dom’, %By)

such thatif 7: V — AN is a solution to [Ty, then in the Moser-Tardos
Algorithm with table 7, each variable is resampled < N times ©, the
dependency graph of I1y has maximum degree independent of NV
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Finding a table that works

Suppose there exist p € (0,1), d € N as in the LLL.

Assume that there exists s > 1 s.t.:
e egr(Dp) <s,
e p-(e-(d+1)°<1.

Then, for any parameter N € N, there exists a Borel CSP
Iy = (V, AV, ¢, dom’, %By)

such thatif 7: V — AN is a solution to [Ty, then in the Moser-Tardos
Algorithm with table 7, each variable is resampled < N times ©, the
dependency graph of [T has maximum degree independent of N,
and Sup ¢ P[%Bn(c)] goes to 0 as N — oo.
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Last step

Suppose a Borel CSP I1 satisfies, for some p € (0,1) and d € N:
e P[B(c)]spforallced,

o the maximum degree of Dy is < d, and

o |p-(d+1)¥1 <1

Then IT has a Borel solution.

A greedy construction using method of conditional probabilities
from computer science + “large section” uniformization.
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Last step

Suppose a Borel CSP I1 satisfies, for some p € (0,1) and d € N:
e P[B(c)]spforallced,

o the maximum degree of Dy is < d, and

o |p-(d+1)¥1 <1

Then IT has a Borel solution.

A greedy construction using method of conditional probabilities
from computer science + “large section” uniformization.

PROOF OF THE MAIN THEOREM:
¢ Construct I1y using the Key Lemma for very large N.

« Find a Borel solution 7: V — AN to [Iy using the lemma above.

e Run MTA(7) to build a Borel solution f: V — A. [
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Open problems

Any interesting applications with atomless prob. spaces? J

Can “subexponential growth” be replaced by “amenable”? J

What about continuous solutions? [
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Thank you!




