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The Lovász Local Lemma

The Lovász Local Lemma (the LLL) is a powerful probabilistic tool.

• Introduced by ERDŐS and LOVÁSZ in ’75.

• Useful for proving existence results.

• Used throughout combinatorics.

• Recently found a number of applications in other areas
(topological dynamics, ergodic theory, descriptive set theory).

This talk is about using the LLL for Borel constructions.
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Framework: Constraint Satisfaction Problems

Constraint satisfaction problem (CSP) is Π= (V ,Λ,C,dom,B) :

• V ,Λ, and C are sets of variables, labels, and constraints,

• for each constraint c ∈C:

◦ dom(c) ⊆V is a finite set, the domain of c,

◦ B(c) ⊆Λdom(c) is the set of bad labelings of dom(c).

dom(c)

c C

V

Λ= {•,•}

∉B(c) (good)∈B(c) (bad)

A solution toΠ: a labeling f : V →Λ s.t. f |dom(c) ∉B(c) ∀c ∈C.
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Example: sinkless orientation

Let G be a locally finite graph. An orientation of G is sinkless if it has
no sinks, i.e., vertices with outdegree 0.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), C=V (G), Λ= {+,−} (coding the direction of an edge),

where for each x ∈V (G):

• dom(x) = {
edges incident to x

}
,

• B(x) = {
the unique labeling of dom(x) making x a sink

}
.
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More definitions (sorry!)

LetΠ= (V ,Λ,C,dom,B) be a CSP.

Dependency graph DΠ:

• V (DΠ) :=C,

• E(DΠ) := {
{c,c′} : c ̸= c′ and dom(c)∩dom(c′) ̸= ;}

dom(c)

c C

V

DΠ

We also need some extra structure:

(Λ,P) is a probability space s.t. each B(c) is .
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Finally, the Local Lemma

Theorem (ERDŐS–LOVÁSZ ’75): the Lovász Local Lemma

Suppose there exist p ∈ (0,1), d ∈N such that:

• P[B(c)] É p for all c ∈C,

• the maximum degree of DΠ is É d , and

• e ·p · (d +1) < 1 . e = 2.71828. . .

ThenΠ has a solution.
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Example: sinkless orientation

Say G is a ∆-regular graph. Want to find a sinkless orientation of G .

A sinkless orientation of G is a solution to a CSP with

• V = E(G), C=V (G), Λ= {+,−} (coding the direction of an edge),

where for each x ∈V (G):

• dom(x) = {
edges incident to x

}
,

• B(x) = {
the unique labeling of dom(x) making x a sink

}
.

Take P to be the uniform measure on {+,−}.

Since G is ∆-regular, we can take

d = ∆ and p = 2−∆.

Since ep(d +1) = e2−∆(∆+1) < 1 for all ∆Ê 4, we conclude:

If ∆Ê 4, G has a sinkless orientation.
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Example: sinkless orientation

Remarks:

• Very flexible: the exact nature of the problem is irrelevant.

• There is a “slack” in the ep(d +1) < 1 bound.

Downside: Nonconstructive!

Theorem (THORNTON ’20)

For any ∆ ∈N, there exists a ∆-regular Borel graph G with no Borel
sinkless orientation.
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Powerful assumption: Subexponential growth

From now on, all CSPs are Borel (V ,Λ, and C are standard Borel
spaces and dom and B are Borel in the natural sense).

When does a Borel CSP have a Borel solution?

Let G be a locally finite graph.

Growth function: γG (R) := sup
x∈V (G)

|BG (x,R)|

Exponential growth rate: egr(G) := lim
R→∞

R
√
γG (R)

The graph G is of subexponential growth if egr(G) = 1.
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Powerful assumption: Subexponential growth

Theorem (ERDŐS–LOVÁSZ ’75): the Lovász Local Lemma

Suppose there exist p ∈ (0,1), d ∈N such that:

P[B(c)] É p ∀c ∈C, max. deg. of DΠ is É d , and e ·p · (d +1) < 1.

ThenΠ has a solution.

Theorem (CSÓKA–GRABOWSKI–MÁTHÉ–PIKHURKO–TYROS)

Suppose there exist p ∈ (0,1), d ∈N as in the LLL.

(some technical assumption)

If DΠ is of subexponential growth , thenΠ has a Borel solution.

For example, this implies the following for ∆Ê 4:

Theorem (THORNTON ’20)

If ∆Ê 3, every Borel ∆-regular graph G of subexponential growth
has a Borel sinkless orientation.
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Powerful assumption: Subexponential growth

Theorem (ERDŐS–LOVÁSZ ’75): the Lovász Local Lemma

Suppose there exist p ∈ (0,1), d ∈N such that:

P[B(c)] É p ∀c ∈C, max. deg. of DΠ is É d , and e ·p · (d +1) < 1.

ThenΠ has a solution.

Theorem (CSÓKA–GRABOWSKI–MÁTHÉ–PIKHURKO–TYROS)

Suppose there exist p ∈ (0,1), d ∈N as in the LLL.

(some technical assumption)

If DΠ is of subexponential growth , thenΠ has a Borel solution.

Lots of applications!

Theorem (AB–YU ’25): Uses the CGMPT Borel LLL

Borel graphs of polynomial growth are hyperfinite.
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A refinement

Theorem (CSÓKA–GRABOWSKI–MÁTHÉ–PIKHURKO–TYROS)

Suppose there exist p ∈ (0,1), d ∈N as in the LLL.

Assume thatΛ is finite and P is the uniform measure onΛ.

Assume further that there exist ∆ ∈N and ε> 0 s.t.:

• supc∈C |dom(c)| É∆ and supx∈V |dom−1(x)| É∆,

• egr(DΠ) < (1+ε)2/3.

If e ·p · (d +1) · |Λ|ε∆ < 1 , thenΠ has a Borel solution.

This can be applied when DΠ is of slow exponential growth. . .
. . . but the base of the exponent depends on |Λ| (and ∆)

In particular, this can only be used when egr(DΠ) < 22/3 ≈ 1.587. . .
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Our result

We prove a Borel version of the LLL under less restrictive growth
assumptions and with no restrictions onΛ:

Theorem (AB–YU)

Suppose there exist p ∈ (0,1), d ∈N as in the LLL.

Assume further that egr(DΠ) < s for some s > 1.

If p · (e · (d +1))s < 1 , thenΠ has a Borel solution.

The growth rate bound only depends on p and d .

Corollary (AB–YU)

Suppose there exist p ∈ (0,1), d ∈N as in the LLL (so e ·p ·(d +1) < 1).

If DΠ is of subexponential growth, thenΠ has a Borel solution.
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Example: Borel sinkless orientations

Theorem (THORNTON ’20)

If ∆Ê 3, every Borel ∆-regular graph G of subexponential growth
has a Borel sinkless orientation.

Our result further implies that:

egr(G) ≲
∆

log2∆
=⇒ a Borel sinkless orientation.
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Proof overview

(1) Moser–Tardos Algorithm: a randomized procedure to find a
solution under the LLL assumptions

(2) Problem: The MTA requires too much randomness!

◦ CGMPT: Randomness conservation: use the same
random input multiple times

(3) Our solution: Probability boosting
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Moser–Tardos Algorithm

We are given a CSPΠ= (V ,Λ,C,dom,B), want a solution.

Moser–Tardos Algorithm

Sample the initial value f (x) ∈Λ for each x ∈V independently.

While at least one constraint is violated do:

◦ Pick a violated constraint c ∈C

(adversarially)

◦ Resample f on dom(c)

C

V

Λ= {•,•}

bad = constant

MOSER–TARDOS ’10: If ep(d +1) < 1, then every variable x ∈V gets
resampled finitely many times with probability 1.
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Moser–Tardos Algorithm: Borel version

Let τ : V →ΛN be a function, which we call a table.

Instead of random sampling, we look up labels for each x ∈V in the
corresponding string τ(x) = (τ(x,0),τ(x,1), . . .).

A counter ℓ(x) keeps track of the position of x’s current label.
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Moser–Tardos Algorithm: Borel version

Let τ : V →ΛN be a function, which we call a table.

Instead of random sampling, we look up labels for each x ∈V in the
corresponding string τ(x) = (τ(x,0),τ(x,1), . . .).

A counter ℓ(x) keeps track of the position of x’s current label.

If ℓ(x) eventually stabilizes, then we can define

f (x) := τ(x,eventual value of ℓ(x)
)
.

If τ is Borel and f is defined everywhere, then f is a Borel solution!

MT ’10: If τ∼PV , then ∀x, f (x) exists with prob. 1.

Not Borel!
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Finding a table that works

Goal: Find a Borel table τ such that MTA(τ) converges everywhere.

CGMPT: Partition V into “sparse” Borel sets V1, . . . , Vk and, for each
1 É i É k, use the same random values for all x ∈Vi .

Our approach: Reduce the problem to a different CSP, with much,
much better parameters!
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Finding a table that works

Key Lemma

Suppose there exist p ∈ (0,1), d ∈N as in the LLL.

Assume that there exists s > 1 s.t.:

• egr(DΠ) < s,

• p · (e · (d +1))s < 1.

Then, for any parameter N ∈N, there exists a Borel CSP

ΠN = (
V ,ΛN, C, dom′, BN

)
such that if τ : V →ΛN is a solution toΠN , then in the Moser–Tardos
Algorithm with table τ, each variable is resampled É N times , the
dependency graph ofΠN has maximum degree independent of N ,
and supc∈CP[BN (c)] goes to 0 as N →∞.
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Last step

Lemma

Suppose a Borel CSPΠ satisfies, for some p ∈ (0,1) and d ∈N:

• P[B(c)] É p for all c ∈C,

• the maximum degree of DΠ is É d , and

• p · (d +1)d+1 < 1 .

ThenΠ has a Borel solution.

A greedy construction using method of conditional probabilities
from computer science + “large section” uniformization.

PROOF OF THE MAIN THEOREM:

• ConstructΠN using the Key Lemma for very large N .

• Find a Borel solution τ : V →ΛN toΠN using the lemma above.

• Run MTA(τ) to build a Borel solution f : V →Λ. ■
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Open problems

Any interesting applications with atomless prob. spaces?

Can “subexponential growth” be replaced by “amenable”?

What about continuous solutions?
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Thank you!
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