Borel Local Lemma for graphs of slow growth

Anton Bernshteyn joint with Jing Yu, Fudan University

University of California, Los Angeles

North American Annual Meeting of the ASL

The Lovász Local Lemma (the LLL) is a powerful probabilistic tool.

- Introduced by ERDŐS and LOVÁSZ in '75.
- Useful for proving existence results.
- Used throughout combinatorics.
- Recently found a number of applications in other areas (topological dynamics, ergodic theory, descriptive set theory).

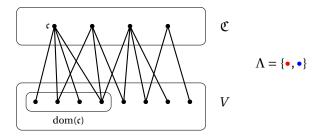
This talk is about using the LLL for **Borel constructions**.

Constraint satisfaction problem (**CSP**) is $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$:

- V, Λ , and \mathfrak{C} are sets of variables, labels, and constraints,
- for each constraint $c \in \mathfrak{C}$:

• $\operatorname{dom}(\mathfrak{c}) \subseteq V$ is a finite set, the domain of \mathfrak{c} ,

• $\mathscr{B}(\mathfrak{c}) \subseteq \Lambda^{\operatorname{dom}(\mathfrak{c})}$ is the set of bad labelings of dom(\mathfrak{c}).

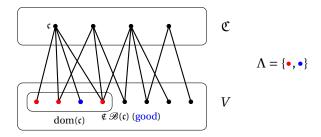


Constraint satisfaction problem (**CSP**) is $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$:

- V, Λ , and \mathfrak{C} are sets of variables, labels, and constraints,
- for each constraint $c \in \mathfrak{C}$:

• $\operatorname{dom}(\mathfrak{c}) \subseteq V$ is a finite set, the domain of \mathfrak{c} ,

• $\mathscr{B}(\mathfrak{c}) \subseteq \Lambda^{\operatorname{dom}(\mathfrak{c})}$ is the set of bad labelings of dom(\mathfrak{c}).

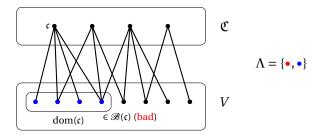


Constraint satisfaction problem (**CSP**) is $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$:

- V, Λ , and \mathfrak{C} are sets of variables, labels, and constraints,
- for each constraint $c \in \mathfrak{C}$:

• $\operatorname{dom}(\mathfrak{c}) \subseteq V$ is a finite set, the domain of \mathfrak{c} ,

• $\mathscr{B}(\mathfrak{c}) \subseteq \Lambda^{\operatorname{dom}(\mathfrak{c})}$ is the set of bad labelings of dom(\mathfrak{c}).

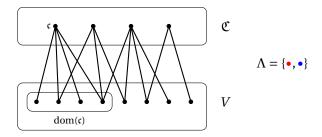


Constraint satisfaction problem (**CSP**) is $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$:

- V, Λ , and \mathfrak{C} are sets of variables, labels, and constraints,
- for each constraint $c \in \mathfrak{C}$:

• $\operatorname{dom}(\mathfrak{c}) \subseteq V$ is a finite set, the domain of \mathfrak{c} ,

• $\mathscr{B}(\mathfrak{c}) \subseteq \Lambda^{\operatorname{dom}(\mathfrak{c})}$ is the set of bad labelings of dom(\mathfrak{c}).



A solution to Π : a labeling $f: V \to \Lambda$ s.t. $f|_{\text{dom}(\mathfrak{c})} \notin \mathscr{B}(\mathfrak{c}) \ \forall \mathfrak{c} \in \mathfrak{C}$.

Let *G* be a locally finite graph. An orientation of *G* is sinkless if it has no sinks, i.e., vertices with outdegree 0.

Let *G* be a locally finite graph. An orientation of *G* is sinkless if it has no sinks, i.e., vertices with outdegree 0.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

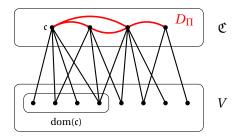
- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

More definitions (sorry!)

Let $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$ be a CSP.

Dependency graph D_{Π} :

- $V(D_{\Pi}) := \mathfrak{C}$,
- $E(D_{\Pi}) := \{ \{ \mathfrak{c}, \mathfrak{c}' \} : \mathfrak{c} \neq \mathfrak{c}' \text{ and } \operatorname{dom}(\mathfrak{c}) \cap \operatorname{dom}(\mathfrak{c}') \neq \emptyset \}$

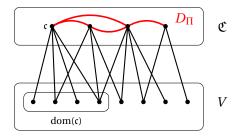


More definitions (sorry!)

Let $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$ be a CSP.

Dependency graph D_{Π} :

- $V(D_{\Pi}) := \mathfrak{C}$,
- $E(D_{\Pi}) \coloneqq \{ \{\mathfrak{c}, \mathfrak{c}'\} : \mathfrak{c} \neq \mathfrak{c}' \text{ and } \operatorname{dom}(\mathfrak{c}) \cap \operatorname{dom}(\mathfrak{c}') \neq \emptyset \}$



We also need some extra structure:

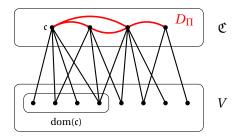
 (Λ, \mathbb{P}) is a probability space s.t. each $\mathscr{B}(\mathfrak{c})$ is $\mathbb{P}^{\text{dom}(\mathfrak{c})}$ -measurable.

More definitions (sorry!)

Let $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$ be a CSP.

Dependency graph D_{Π} :

- $V(D_{\Pi}) := \mathfrak{C}$,
- $E(D_{\Pi}) := \{ \{\mathfrak{c}, \mathfrak{c}'\} : \mathfrak{c} \neq \mathfrak{c}' \text{ and } \operatorname{dom}(\mathfrak{c}) \cap \operatorname{dom}(\mathfrak{c}') \neq \emptyset \}$



We also need some extra structure:

 (Λ, \mathbb{P}) is a probability space s.t. each $\mathscr{B}(\mathfrak{c})$ is \mathbb{P} -measurable.

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

• $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \text{ for all } \mathfrak{c} \in \mathfrak{C},$

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

- $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \text{ for all } \mathfrak{c} \in \mathfrak{C},$
- the maximum degree of D_{Π} is $\leq d$, and

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

- $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \text{ for all } \mathfrak{c} \in \mathfrak{C},$
- the maximum degree of D_{Π} is $\leq d$, and

$$e \cdot p \cdot (d+1) < 1$$

e = 2.71828...

Say *G* is a Δ -regular graph. Want to find a sinkless orientation of *G*.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

Say *G* is a Δ -regular graph. Want to find a sinkless orientation of *G*.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

Take \mathbb{P} to be the uniform measure on $\{+, -\}$.

Say *G* is a Δ -regular graph. Want to find a sinkless orientation of *G*.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

Take \mathbb{P} to be the uniform measure on $\{+, -\}$.

Since *G* is Δ -regular, we can take

$$d = \Delta$$
 and $p = 2^{-\Delta}$.

Say *G* is a Δ -regular graph. Want to find a sinkless orientation of *G*.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

Take \mathbb{P} to be the uniform measure on $\{+, -\}$.

Since *G* is Δ -regular, we can take

$$d = \Delta$$
 and $p = 2^{-\Delta}$.

Since $ep(d+1) = e2^{-\Delta}(\Delta+1) < 1$ for all $\Delta \ge 4$, we conclude:

Say *G* is a Δ -regular graph. Want to find a sinkless orientation of *G*.

A sinkless orientation of G is a solution to a CSP with

• V = E(G), $\mathfrak{C} = V(G)$, $\Lambda = \{+, -\}$ (coding the direction of an edge),

where for each $x \in V(G)$:

- $dom(x) = \{edges incident to x\},\$
- $\mathscr{B}(x) = \{$ the unique labeling of dom(x) making x a sink $\}$.

Take \mathbb{P} to be the uniform measure on $\{+, -\}$.

Since *G* is Δ -regular, we can take

$$d = \Delta$$
 and $p = 2^{-\Delta}$.

Since $ep(d+1) = e2^{-\Delta}(\Delta+1) < 1$ for all $\Delta \ge 4$, we conclude:

If $\Delta \ge 4$, *G* has a sinkless orientation.

Remarks:

- Very flexible: the exact nature of the problem is irrelevant.
- There is a "slack" in the ep(d+1) < 1 bound.

Remarks:

- Very flexible: the exact nature of the problem is irrelevant.
- There is a "slack" in the ep(d+1) < 1 bound.

Downside: Nonconstructive!

Theorem (THORNTON '20)

For any $\Delta \in \mathbb{N}$, there exists a Δ -regular Borel graph *G* with **no** Borel sinkless orientation. B

From now on, **all CSPs are Borel** (V, Λ , and \mathfrak{C} are standard Borel spaces and dom and \mathfrak{B} are Borel in the natural sense).

When does a Borel CSP have a Borel solution?

From now on, **all CSPs are Borel** (V, Λ , and \mathfrak{C} are standard Borel spaces and dom and \mathfrak{B} are Borel in the natural sense).

When does a Borel CSP have a Borel solution?

Let *G* be a locally finite graph.

Growth function: $\gamma_G(R) \coloneqq \sup_{x \in V(G)} |B_G(x, R)|$ Exponential growth rate: $egr(G) \coloneqq \lim_{R \to \infty} \sqrt[R]{\gamma_G(R)}$

The graph *G* is of subexponential growth if egr(G) = 1.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \ \, \text{max. deg. of } D_{\Pi} \text{ is } \leq d, \ \, \text{and} \ \, e \cdot p \cdot (d+1) < 1.$

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \,\, \text{is} \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka-Grabowski-Máthé-Pikhurko-Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(some technical assumption)

If D_{Π} is of subexponential growth , then Π has a **Borel** solution.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \,\, \text{is} \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(some technical assumption)

If D_{Π} is of subexponential growth, then Π has a **Borel** solution.

For example, this implies the following for $\Delta \ge 4$:

Theorem (THORNTON '20)

If $\Delta \ge 3$, every Borel Δ -regular graph *G* of subexponential growth has a Borel sinkless orientation.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \text{ is } \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(some technical assumption)

If D_{Π} is of subexponential growth, then Π has a **Borel** solution.

Lots of applications!

Theorem (AB–Yu '25): Uses the CGMPT Borel LLL

Borel graphs of polynomial growth are hyperfinite.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \text{ is } \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(*) Assume that $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})|$ and $|\Lambda|$ are finite.

If D_{Π} is of subexponential growth, then Π has a Borel solution.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \text{ is } \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(*) Assume that $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})|$ and $|\Lambda|$ are finite.

If D_{Π} is of subexponential growth, then Π has a Borel solution.

Condition (*) typically holds in applications.

Theorem (ERDŐS–LOVÁSZ '75): the Lovász Local Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ such that:

 $\mathbb{P}[\mathscr{B}(\mathfrak{c})] \leq p \,\,\forall \mathfrak{c} \in \mathfrak{C}, \,\, \text{max. deg. of } D_{\Pi} \text{ is } \leq d, \,\, \text{and} \,\, e \cdot p \cdot (d+1) < 1.$

Then Π has a solution.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

(*) Assume that $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})|$ and $|\Lambda|$ are finite.

If D_{Π} is of subexponential growth , then Π has a Borel solution.

Condition (*) typically holds in applications.

But do we really need it?..

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that Λ is finite and \mathbb{P} is the uniform measure on Λ .

Assume further that there exist $\Delta \in \mathbb{N}$ and $\varepsilon > 0$ s.t.:

- $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})| \leq \Delta$ and $\sup_{x\in V} |\operatorname{dom}^{-1}(x)| \leq \Delta$,
- $\operatorname{egr}(D_{\Pi}) < (1 + \varepsilon)^{2/3}$.

If $|e \cdot p \cdot (d+1) \cdot |\Lambda|^{\epsilon \Delta} < 1$, then Π has a Borel solution.

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that Λ is finite and \mathbb{P} is the uniform measure on Λ .

Assume further that there exist $\Delta \in \mathbb{N}$ and $\varepsilon > 0$ s.t.:

- $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})| \leq \Delta$ and $\sup_{x\in V} |\operatorname{dom}^{-1}(x)| \leq \Delta$,
- $\operatorname{egr}(D_{\Pi}) < (1 + \varepsilon)^{2/3}$.

If $|e \cdot p \cdot (d+1) \cdot |\Lambda|^{\epsilon \Delta} < 1$, then Π has a Borel solution.

This can be applied when D_{Π} is of slow exponential growth...

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that Λ is finite and \mathbb{P} is the uniform measure on Λ .

Assume further that there exist $\Delta \in \mathbb{N}$ and $\varepsilon > 0$ s.t.:

- $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})| \leq \Delta$ and $\sup_{x\in V} |\operatorname{dom}^{-1}(x)| \leq \Delta$,
- $\operatorname{egr}(D_{\Pi}) < (1 + \varepsilon)^{2/3}$.

If $|e \cdot p \cdot (d+1) \cdot |\Lambda|^{\epsilon \Delta} < 1$, then Π has a Borel solution.

This can be applied when D_{Π} is of slow exponential growth... ...but the base of the exponent depends on $|\Lambda|$ (and Δ)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that Λ is finite and \mathbb{P} is the uniform measure on Λ .

Assume further that there exist $\Delta \in \mathbb{N}$ and $\varepsilon > 0$ s.t.:

- $\sup_{\mathfrak{c}\in\mathfrak{C}} |\operatorname{dom}(\mathfrak{c})| \leq \Delta$ and $\sup_{x\in V} |\operatorname{dom}^{-1}(x)| \leq \Delta$,
- $\operatorname{egr}(D_{\Pi}) < (1 + \varepsilon)^{2/3}$.

If $|e \cdot p \cdot (d+1) \cdot |\Lambda|^{\epsilon \Delta} < 1$, then Π has a Borel solution.

This can be applied when D_{Π} is of slow exponential growth... ...but the base of the exponent depends on $|\Lambda|$ (and Δ)

In particular, this can only be used when $egr(D_{\Pi}) < 2^{2/3} \approx 1.587...$

We prove a Borel version of the LLL under less restrictive growth assumptions and with no restrictions on Λ :

Theorem (AB–YU)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume further that $egr(D_{\Pi}) < s$ for some s > 1.

If $p \cdot (e \cdot (d+1))^s < 1$, then Π has a Borel solution.

The growth rate bound only depends on p and d.

We prove a Borel version of the LLL under less restrictive growth assumptions and with no restrictions on Λ :

Theorem (AB–YU)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume further that $egr(D_{\Pi}) < s$ for some s > 1.

If $p \cdot (e \cdot (d+1))^s < 1$, then Π has a Borel solution.

The growth rate bound only depends on *p* and *d*.

Corollary (AB-YU)

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL (so $e \cdot p \cdot (d+1) < 1$).

If D_{Π} is of subexponential growth, then Π has a Borel solution.

Theorem (THORNTON '20)

If $\Delta \ge 3$, every Borel Δ -regular graph *G* of subexponential growth has a Borel sinkless orientation.

Theorem (THORNTON '20)

If $\Delta \ge 3$, every Borel Δ -regular graph G of subexponential growth has a Borel sinkless orientation.

Our result further implies that:

$$\operatorname{egr}(G) \lesssim \frac{\Delta}{\log_2 \Delta} \implies$$
 a Borel sinkless orientation.

- (1) **Moser–Tardos Algorithm**: a **randomized** procedure to find a solution under the LLL assumptions
- (2) Problem: The MTA requires too much randomness!
 - CGMPT: Randomness conservation: use the same random input multiple times
- (3) Our solution: Probability boosting

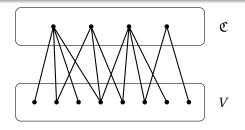
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



$$\Lambda = \{\bullet, \bullet\}$$

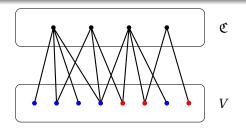
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



$$\Lambda = \{\bullet, \bullet\}$$

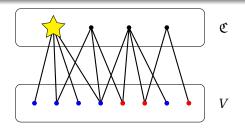
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $\mathfrak{c} \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

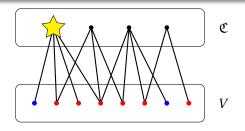
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

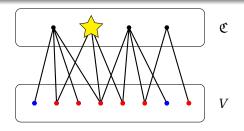
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

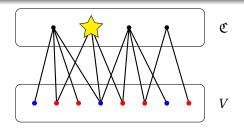
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

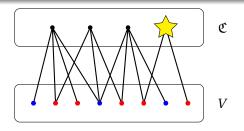
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $\mathfrak{c} \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

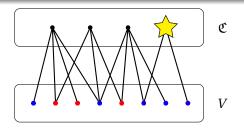
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $\mathfrak{c} \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

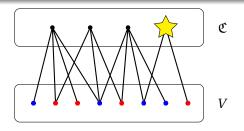
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



 $\Lambda = \{\bullet, \bullet\}$

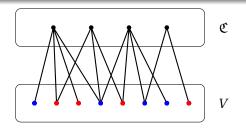
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $c \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



$$\Lambda = \{\bullet, \bullet\}$$

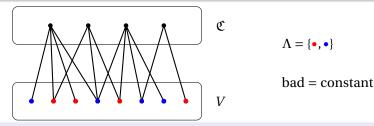
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

- Pick a violated constraint $\mathfrak{c} \in \mathfrak{C}$
- **Resample** *f* on dom(**c**)



MOSER-TARDOS '10: If ep(d + 1) < 1, then every variable $x \in V$ gets resampled finitely many times with probability 1.

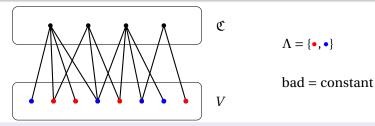
We are given a CSP $\Pi = (V, \Lambda, \mathfrak{C}, \operatorname{dom}, \mathscr{B})$, want a solution.

Moser-Tardos Algorithm

Sample the initial value $f(x) \in \Lambda$ for each $x \in V$ independently.

While at least one constraint is violated do:

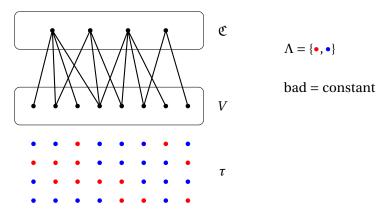
- Pick a violated constraint $c \in \mathfrak{C}$ (adversarially)
- **Resample** *f* on dom(c)



MOSER-TARDOS '10: If ep(d + 1) < 1, then every variable $x \in V$ gets resampled finitely many times with probability 1.

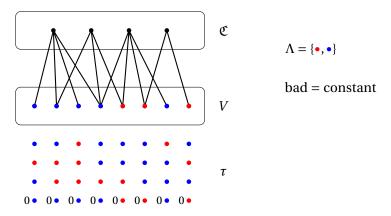
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



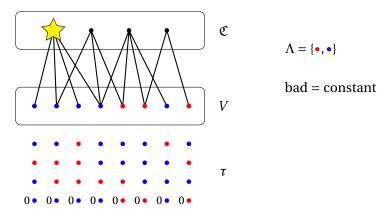
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



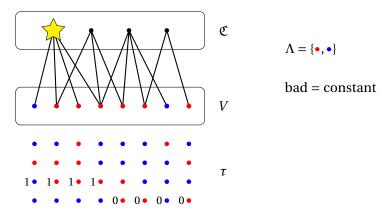
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



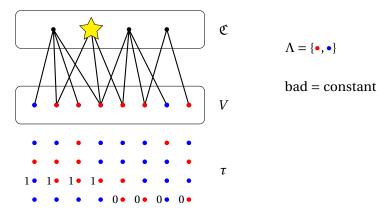
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



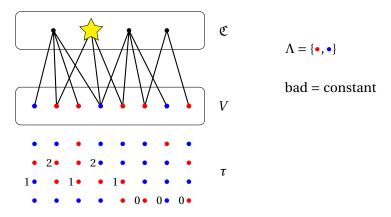
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



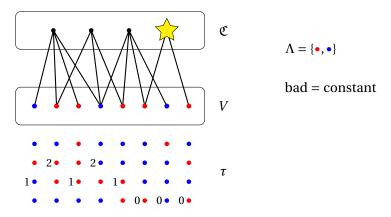
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



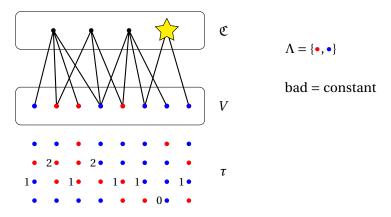
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



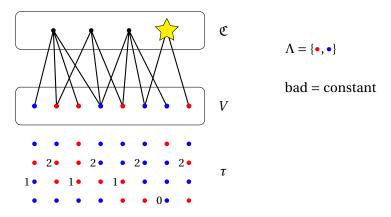
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



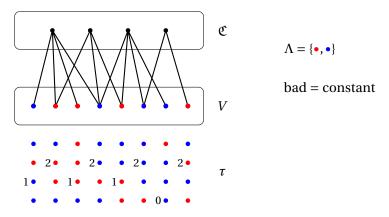
Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.



Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.

A counter $\ell(x)$ keeps track of the position of *x*'s current label.

If $\ell(x)$ eventually stabilizes, then we can define

 $f(x) \coloneqq \tau(x, \text{eventual value of } \ell(x)).$

Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.

A counter $\ell(x)$ keeps track of the position of *x*'s current label.

If $\ell(x)$ eventually stabilizes, then we can define

 $f(x) \coloneqq \tau(x, \text{eventual value of } \ell(x)).$

If τ is Borel and *f* is defined everywhere, then *f* is a Borel solution!

Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.

A counter $\ell(x)$ keeps track of the position of *x*'s current label.

If $\ell(x)$ eventually stabilizes, then we can define

 $f(x) \coloneqq \tau(x, \text{eventual value of } \ell(x)).$

If τ is Borel and *f* is defined everywhere, then *f* is a Borel solution!

MT '10: If $\tau \sim \mathbb{P}^V$, then $\forall x, f(x)$ exists with prob. 1.

Let $\tau: V \to \Lambda^{\mathbb{N}}$ be a function, which we call a table.

Instead of random sampling, we look up labels for each $x \in V$ in the corresponding string $\tau(x) = (\tau(x, 0), \tau(x, 1), ...)$.

A counter $\ell(x)$ keeps track of the position of *x*'s current label.

If $\ell(x)$ eventually stabilizes, then we can define

 $f(x) \coloneqq \tau(x, \text{eventual value of } \ell(x)).$

If τ is Borel and *f* is defined everywhere, then *f* is a Borel solution!

MT '10: If $\tau \sim \mathbb{P}^V$, then $\forall x, f(x)$ exists with prob. 1. Not Borel! B

Goal: Find a Borel table τ such that MTA(τ) converges everywhere.

Goal: Find a Borel table τ such that MTA(τ) converges everywhere.

CGMPT: Partition *V* into "sparse" Borel sets V_1, \ldots, V_k and, for each $1 \le i \le k$, use the same random values for all $x \in V_i$.

Goal: Find a Borel table τ such that MTA(τ) converges everywhere.

CGMPT: Partition *V* into "sparse" Borel sets $V_1, ..., V_k$ and, for each $1 \le i \le k$, use the same random values for all $x \in V_i$.

Our approach: Reduce the problem to a different CSP, with much, much better parameters!

Finding a table that works

Key Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that there exists s > 1 s.t.:

- $\operatorname{egr}(D_{\Pi}) < s$,
- $p \cdot (e \cdot (d+1))^s < 1.$

Key Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that there exists s > 1 s.t.:

- $\operatorname{egr}(D_{\Pi}) < s$,
- $p \cdot (e \cdot (d+1))^s < 1.$

Then, for any parameter $N \in \mathbb{N}$, there exists a Borel CSP

$$\Pi_N = \left(V, \Lambda^{\mathbb{N}}, \mathfrak{C}, \operatorname{dom}', \mathscr{B}_N \right)$$

such that if $\tau: V \to \Lambda^{\mathbb{N}}$ is a solution to Π_N , then in the Moser–Tardos Algorithm with table τ , each variable is resampled $\leq N$ times \bigcirc

Key Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that there exists *s* > 1 s.t.:

- $\operatorname{egr}(D_{\Pi}) < s$,
- $p \cdot (e \cdot (d+1))^s < 1.$

Then, for any parameter $N \in \mathbb{N}$, there exists a Borel CSP

$$\Pi_N = \left(V, \Lambda^{\mathbb{N}}, \mathfrak{C}, \operatorname{dom}', \mathscr{B}_N \right)$$

such that if $\tau: V \to \Lambda^{\mathbb{N}}$ is a solution to Π_N , then in the Moser–Tardos Algorithm with table τ , each variable is resampled $\leq N$ times \bigcirc , the dependency graph of Π_N has maximum degree independent of N

Key Lemma

Suppose there exist $p \in (0, 1)$, $d \in \mathbb{N}$ as in the LLL.

Assume that there exists *s* > 1 s.t.:

- $\operatorname{egr}(D_{\Pi}) < s$,
- $p \cdot (e \cdot (d+1))^s < 1.$

Then, for any parameter $N \in \mathbb{N}$, there exists a Borel CSP

$$\Pi_N = \left(V, \Lambda^{\mathbb{N}}, \mathfrak{C}, \operatorname{dom}', \mathscr{B}_N \right)$$

such that if $\tau: V \to \Lambda^{\mathbb{N}}$ is a solution to Π_N , then in the Moser–Tardos Algorithm with table τ , each variable is resampled $\leq N$ times O, the dependency graph of Π_N has maximum degree independent of N, and $\sup_{\mathfrak{c}\in \mathfrak{C}} \mathbb{P}[\mathscr{B}_N(\mathfrak{c})]$ goes to 0 as $N \to \infty$.

Last step

Lemma

Suppose a Borel CSP Π satisfies, for some $p \in (0, 1)$ and $d \in \mathbb{N}$:

- $\mathbb{P}[B(\mathfrak{c})] \leq p \text{ for all } \mathfrak{c} \in \mathfrak{C},$
- the maximum degree of D_{Π} is $\leq d$, and
- $p \cdot (d+1)^{d+1} < 1$.

Then Π has a Borel solution.

A greedy construction using method of conditional probabilities from computer science + "large section" uniformization.

Lemma

Suppose a Borel CSP Π satisfies, for some $p \in (0, 1)$ and $d \in \mathbb{N}$:

- $\mathbb{P}[B(\mathfrak{c})] \leq p$ for all $\mathfrak{c} \in \mathfrak{C}$,
- the maximum degree of D_{Π} is $\leq d$, and
- $p \cdot (d+1)^{d+1} < 1$.

Then П has a Borel solution.

A greedy construction using method of conditional probabilities from computer science + "large section" uniformization.

PROOF OF THE MAIN THEOREM:

- Construct Π_N using the **Key Lemma** for very large *N*.
- Find a Borel solution $\tau: V \to \Lambda^{\mathbb{N}}$ to Π_N using the lemma above.
- Run MTA(τ) to build a Borel solution $f: V \to \Lambda$.

Any interesting applications with atomless prob. spaces?

Can "subexponential growth" be replaced by "amenable"?

What about continuous solutions?

Thank you!