A uniqueness condition for composition analyses

Christine Eagles

University of Waterloo

May 14,2025

Assumptions

We work in a stable theory T eliminating imaginaries and assume all types are of finite U-rank.

Assumptions

We work in a stable theory T eliminating imaginaries and assume all types are of finite U-rank.

Fix $\mathcal{U} \models T$, a sufficiently saturated model.

Assumptions

We work in a stable theory T eliminating imaginaries and assume all types are of finite *U*-rank.

Fix $\mathcal{U} \models T$, a sufficiently saturated model.

We will always assume A < U is a small subset of parameters and that $A = \operatorname{acl}(A)$.

Goal

For any finite rank stationary type $p \in S(A)$, we can break it down into a collection of minimal types.

Goal

For any finite rank stationary type $p \in S(A)$, we can break it down into a collection of minimal types.

Definition

A semi-minimal analysis for p is a sequence of A-definable maps

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that:

1
$$U(p_{i+1}) > U(p_i)$$
 for all $i = 0, ..., n$, and

2 For all i = 0, ..., n, every fibre is almost internal to a minimal type.

Definition

A stationary type $p \in S(A)$ is **almost internal** to a minimal type $r \in S(B)$ if there exists $C \supseteq A \cup B$, $a \models p|_C$ and $c_1, ..., c_n \models r|_C$ such that $a \in \operatorname{acl}(Cc_1, ..., c_n)$.

Goal

For any finite rank stationary type $p \in S(A)$, we can break it down into a collection of minimal types.

Definition

A semi-minimal analysis for p is a sequence of A-definable maps

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that:

1
$$U(p_{i+1}) > U(p_i)$$
 for all $i = 0, ..., n$, and

2 For all i = 0, ..., n, every fibre is almost internal to a minimal type.

Definition

A stationary type $p \in S(A)$ is **almost internal** to a minimal type $r \in S(B)$ if there exists $C \supseteq A \cup B$, $a \models p|_C$ and $c_1, ..., c_n \models r|_C$ such that $a \in \operatorname{acl}(Cc_1, ..., c_n)$.

Are these minimal types "unique"? Do they depend on the analysis?

Let $p,q \in S(A)$ stationary and $f: p \rightarrow q$ be an A-definable map.

Definition

• A fibre of $f : p \to q$ is a type of the form tp(a/Af(a)) for $a \models p$.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be an A-definable map.

Definition

- A fibre of $f : p \to q$ is a type of the form tp(a/Af(a)) for $a \models p$.
- f: p → q is a fibration if every (equivalently some) fibre of f is stationary i.e. for every (some) a ⊨ p there is a unique non-forking extension of tp(a/Af(a)) to tp(a/acl(Af(a))).

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be an A-definable map.

Definition

- A fibre of $f : p \to q$ is a type of the form tp(a/Af(a)) for $a \models p$.
- f: p → q is a fibration if every (equivalently some) fibre of f is stationary i.e. for every (some) a ⊨ p there is a unique non-forking extension of tp(a/Af(a)) to tp(a/acl(Af(a))).

Definition

Let $p \in S(A)$, $q \in S(B)$ be stationary. We say p is **orthogonal** to q denoted $p \perp q$ if for all $C \supseteq A \cup B$, $a \models p|_C$, $b \models q|_C$, $a \downarrow_C b$.

Example

Let $p, q \in S(A)$ with $p \perp q$. Recall, $p \otimes q = tp(ab/A)$ for any $a \models p$ and $b \models q$.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be an A-definable map.

Definition

- A fibre of $f : p \to q$ is a type of the form tp(a/Af(a)) for $a \models p$.
- f: p → q is a fibration if every (equivalently some) fibre of f is stationary i.e. for every (some) a ⊨ p there is a unique non-forking extension of tp(a/Af(a)) to tp(a/acl(Af(a))).

Definition

Let $p \in S(A)$, $q \in S(B)$ be stationary. We say p is **orthogonal** to q denoted $p \perp q$ if for all $C \supseteq A \cup B$, $a \models p|_C$, $b \models q|_C$, $a \downarrow_C b$.

Example

Let $p, q \in S(A)$ with $p \perp q$. Recall, $p \otimes q = tp(ab/A)$ for any $a \models p$ and $b \models q$. The projection map $\pi_p : p \otimes q \rightarrow p$ is a fibration and for $(a, b) \models p \otimes q$, the fibre is $q|_a$.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be a fibration over A.

Definition

An A-definable map $f : p \rightarrow q$ is a **fibration** if every fibre of f is stationary.

Definition

- A fibration $f : p \to q$ is **finite-to-one** if for every $a \models p$, $a \in \operatorname{acl}(Af(a))$.
- A type p ∈ S(A) admits no proper fibrations if and only if for every fibration over A f : p → q either q is algebraic or f is finite-to-one.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be a fibration over A.

Definition

An A-definable map $f : p \rightarrow q$ is a **fibration** if every fibre of f is stationary.

Definition

- A fibration $f : p \to q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p ∈ S(A) admits no proper fibrations if and only if for every fibration over A f : p → q either q is algebraic or f is finite-to-one.

Example

Every minimal type admits no proper fibrations.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be a fibration over A.

Definition

An A-definable map $f : p \rightarrow q$ is a **fibration** if every fibre of f is stationary.

Definition

- A fibration $f : p \to q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p ∈ S(A) admits no proper fibrations if and only if for every fibration over A f : p → q either q is algebraic or f is finite-to-one.

Example

Every minimal type admits no proper fibrations.

If U(p) = 1, $f : p \to q$ is a fibration then either U(q) = 0 in which case q is algebraic or U(q) = 1. In this case p and q are interalgebraic over A.

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be a fibration over A.

Definition

An A-definable map $f : p \rightarrow q$ is a **fibration** if every fibre of f is stationary.

Definition

- A fibration $f : p \to q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p ∈ S(A) admits no proper fibrations if and only if for every fibration over A f : p → q either q is algebraic or f is finite-to-one.

Example

Every minimal type admits no proper fibrations.

If U(p) = 1, $f : p \to q$ is a fibration then either U(q) = 0 in which case q is algebraic or U(q) = 1. In this case p and q are interalgebraic over A.

Not every type admitting no proper fibrations is minimal!

No proper fibrations and internality

Let $p, q \in S(A)$ stationary and $f : p \rightarrow q$ be a fibration over A.

Definition

- A fibration $f : p \to q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type *p* admits **no proper fibrations** if and only if for every fibration $f: p \rightarrow q$ either *q* is algebraic or *f* is finite-to-one.

Fact

[2, Proposition 2.3] Suppose $p \in S(A)$ is a stationary non-algebraic type of finite U-rank that admits no proper fibrations. Then p is almost internal to a minimal type $r \in (B)$.

Let $p, q \in S(A)$ and $f : p \rightarrow q$ be a fibration over A with U(p) > U(q).

Definition

- A fibration $f : p \rightarrow q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p has no proper fibrations if and only if for every fibration
 f : p → q either q is algebraic or f is finite-to-one.

Definition

A fibration $f : p \to q$ is **indecomposable** if whenever we have fibrations $g : p \to r$, $h : r \to q$ are fibrations with $r \in S(A)$ and $f = h \circ g$, either g or h is finite-to-one.

Let $p, q \in S(A)$ and $f : p \rightarrow q$ be a fibration over A with U(p) > U(q).

Definition

- A fibration $f : p \rightarrow q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p has no proper fibrations if and only if for every fibration
 f : p → q either q is algebraic or f is finite-to-one.

Definition

A fibration $f : p \to q$ is **indecomposable** if whenever we have fibrations $g : p \to r$, $h : r \to q$ are fibrations with $r \in S(A)$ and $f = h \circ g$, either g or h is finite-to-one.

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$, the fibre tp(a/f(a)A) admits no proper fibrations.

Let $p, q \in S(A)$ and $f : p \rightarrow q$ be a fibration over A with U(p) > U(q).

Definition

- A fibration $f : p \rightarrow q$ is **finite-to-one** if for every $a \models p$, $a \in acl(Af(a))$.
- A type p has no proper fibrations if and only if for every fibration
 f : p → q either q is algebraic or f is finite-to-one.

Definition

A fibration $f : p \to q$ is **indecomposable** if whenever we have fibrations $g : p \to r$, $h : r \to q$ are fibrations with $r \in S(A)$ and $f = h \circ g$, either g or h is finite-to-one.

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$, the fibre tp(a/f(a)A) admits no proper fibrations.

So f indecomposable \implies each fibre is almost internal to a minimal type.

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

Let $r, s \in S(A)$ be two minimal types and $r \perp s$.

• The projection map $\pi_s : r \otimes s \to s$ is a fibration and for all $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for all $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- For all $b \models s$, $r|_b$ is minimal

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for all $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- For all $b \models s$, $r|_b$ is minimal $\implies \pi_s$ is **indecomposable**

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for all $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- For all $b \models s$, $r|_b$ is minimal $\implies \pi_s$ is indecomposable
- Fix $c \in A$. The map $f_s : s \to \bullet$ given by $f_s(b) = c$ for all $b \models q$. f_s is a fibration with a single fibre tp(b/cA) = tp(b/A) = s

Lemma

A fibration $f : p \to q$ is indecomposable if and only if for some (any) $a \models p$ the fibre tp(a/f(a)A) admits no proper fibrations.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for all $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- For all $b \models s$, $r|_b$ is minimal $\implies \pi_s$ is indecomposable
- Fix c ∈ A. The map f_s : s → given by f_s(b) = c for all b ⊨ q. f_s is a fibration with a single fibre tp(b/cA) = tp(b/A) = s ⇒ f_s is indecomposable

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that

•
$$U(p_{i+1}) > U(p_i)$$
 for all $i = 0, ..., n$, and
• $f_i : p_{i+1} \rightarrow p_i$ is indecomposable for all $i = 0, ..., n$.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$ho=
ho_{n+1} frac{f_n}{
ightarrow}
ho_n
ightarrow \cdots frac{f_1}{
ightarrow}
ho_1 frac{f_0}{
ightarrow} ullet$$

such that

- U(p_{i+1}) > U(p_i) for all i = 0, ..., n, and → fibres are non algebraic and sequence terminates
- ② $f_i : p_{i+1} \rightarrow p_i$ is indecomposable for all i = 0, ..., n. → ensures that the fibres admit no proper fibrations

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$ho=
ho_{n+1} frac{f_n}{
ightarrow}
ho_n
ightarrow \cdots frac{f_1}{
ightarrow}
ho_1 frac{f_0}{
ightarrow} ullet$$

such that

- U(p_{i+1}) > U(p_i) for all i = 0, ..., n, and → fibres are non algebraic and sequence terminates
- ② $f_i : p_{i+1} \rightarrow p_i$ is indecomposable for all i = 0, ..., n. → ensures that the fibres admit no proper fibrations \implies the fibres of f_i are all **almost internal** to some minimal type

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that

- U(p_{i+1}) > U(p_i) for all i = 0, ..., n, and → fibres are non algebraic and sequence terminates
- ② $f_i : p_{i+1} \rightarrow p_i$ is indecomposable for all i = 0, ..., n. → ensures that the fibres admit no proper fibrations \implies the fibres of f_i are all **almost internal** to some minimal type

Every stationary type of finite U-rank has a composition analysis.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that

Example

•
$$r \otimes s \xrightarrow{\pi_s} s \xrightarrow{f_s}$$
 • is a composition analysis.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. A **composition** analysis for *p* is a sequence of fibrations over *A*

$$p = p_{n+1} \xrightarrow{f_n} p_n \to \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

such that

•
$$U(p_{i+1}) > U(p_i)$$
 for all $i = 0, ..., n$, and

2) $f_i : p_{i+1} \rightarrow p_i$ is indecomposable for all i = 0, ..., n.

Example

•
$$r \otimes s \xrightarrow{\pi_s} s \xrightarrow{f_s} \bullet$$
 is a composition analysis.

• $r \otimes s \xrightarrow{\pi_r} r \xrightarrow{r_r} \bullet$ is another composition analysis.

Example

Let $r, s \in S(A)$ be two minimal types and $r \perp s$.

• The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- In this case, $r|_b(\mathcal{U}) = r(\mathcal{U})$ so really each fibre is almost *r*-internal.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- In this case, $r|_b(U) = r(U)$ so really each fibre is almost *r*-internal.
- Let $a, a' \models p$ be distinct and $f : p \rightarrow q$ be a fibration over A.
- In general, it is possible the fibre tp(a/f(a)A) is almost internal to a minimal r ∈ S(B) and tp(a'/f(a')A) is almost internal to a minimal r' ∈ S(B') with B ≠ B'.

Example

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- In this case, $r|_b(U) = r(U)$ so really each fibre is almost *r*-internal.
- Let $a, a' \models p$ be distinct and $f : p \rightarrow q$ be a fibration over A.
- In general, it is possible the fibre tp(a/f(a)A) is almost internal to a minimal r ∈ S(B) and tp(a'/f(a')A) is almost internal to a minimal r' ∈ S(B') with B ≠ B'.
- So a minimal type appearing in a composition analysis might depending on the choice of a fibre!

Example

Let $r, s \in S(A)$ be two minimal types and $r \perp s$.

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- In this case, $r|_b(\mathcal{U}) = r(\mathcal{U})$ so really each fibre is almost *r*-internal.
- Let $a, a' \models p$ be distinct and $f : p \rightarrow q$ be a fibration over A.
- In general, it is possible the fibre tp(a/f(a)A) is almost internal to a minimal r ∈ S(B) and tp(a'/f(a')A) is almost internal to a minimal r' ∈ S(B') with B ≠ B'.
- So a minimal type appearing in a composition analysis might depending on the choice of a fibre!
- Also, is dependent on the choice of r to witness that tp(a/f(a)A) is almost internal to a minimal type!

Example

Let $r, s \in S(A)$ be two minimal types and $r \perp s$.

- The projection map $\pi_s : r \otimes s \to s$ is a fibration and for every $(a, b) \models r \otimes s$, the fibre is $tp(ab/bA) = tp(a/bA) = r|_b$.
- In this case, $r|_b(\mathcal{U}) = r(\mathcal{U})$ so really each fibre is almost *r*-internal.
- Let $a, a' \models p$ be distinct and $f : p \rightarrow q$ be a fibration over A.
- In general, it is possible the fibre tp(a/f(a)A) is almost internal to a minimal r ∈ S(B) and tp(a'/f(a')A) is almost internal to a minimal r' ∈ S(B') with B ≠ B'.
- So a minimal type appearing in a composition analysis might depending on the choice of a fibre!
- Also, is dependent on the choice of r to witness that tp(a/f(a)A) is almost internal to a minimal type!
- But we can get uniqueness up to non-orthogonality of families of minimal types.

Definition

Let B ⊇ A, r ∈ S(B) be minimal. By anA-conjugate of r we mean a type r^τ, which is obtained by applying some τ ∈ Aut_A(U) to the formulas in r.

Definition

- Let B ⊇ A, r ∈ S(B) be minimal. By anA-conjugate of r we mean a type r^τ, which is obtained by applying some τ ∈ Aut_A(U) to the formulas in r.
- The set of all A-conjugates of $r \in S(B)$ is $\mathcal{R} = \{r^{\tau} \mid \tau \in \operatorname{Aut}_{A}(\mathcal{U})\}.$

Definition

- Let B ⊇ A, r ∈ S(B) be minimal. By anA-conjugate of r we mean a type r^τ, which is obtained by applying some τ ∈ Aut_A(U) to the formulas in r.
- The set of all A-conjugates of $r \in S(B)$ is $\mathcal{R} = \{r^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U})\}.$
- A family of types *R* is *A*-invariant if for every *τ* ∈ Aut_A(*U*), whenever *r* ∈ *R*, then *r^τ* ∈ *R*.

Definition

- Let B ⊇ A, r ∈ S(B) be minimal. By anA-conjugate of r we mean a type r^τ, which is obtained by applying some τ ∈ Aut_A(U) to the formulas in r.
- The set of all A-conjugates of $r \in S(B)$ is $\mathcal{R} = \{r^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U})\}.$
- A family of types \mathcal{R} is *A*-invariant if for every $\tau \in Aut_{\mathcal{A}}(\mathcal{U})$, whenever $r \in \mathcal{R}$, then $r^{\tau} \in \mathcal{R}$.
- [1, Lemma 5.4] A type $p \in S(A)$ is **almost internal** to an A-invariant family of A-conjugates of a minimal type $r \in S(B)$ if and only if p is almost r-internal.

• Let $f : p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre tp(a/f(a)A) is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.

- Let $f : p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre $\operatorname{tp}(a/f(a)A)$ is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.
- We denote $\min(f)$ to be the set of all A-conjugates of $r_{f(a)}$, i.e.

$$\min(f) = \{ r_{f(a)}^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U}) \}.$$

- Let $f : p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre tp(a/f(a)A) is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.
- We denote $\min(f)$ to be the set of all A-conjugates of $r_{f(a)}$, i.e.

$$\min(f) = \{ r_{f(a)}^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U}) \}.$$

• The family min(f) is well-defined up to non-orthogonality

- Let $f: p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre tp(a/f(a)A) is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.
- We denote $\min(f)$ to be the set of all A-conjugates of $r_{f(a)}$, i.e.

$$\min(f) = \{ r_{f(a)}^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U}) \}.$$

 The family min(f) is well-defined up to non-orthogonality (independent of the choice of a ⊨ p and r_{f(a)} witnessing tp(a/f(a)A) is almost internal to a minimal type).

- Let $f : p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre tp(a/f(a)A) is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.
- We denote $\min(f)$ to be the set of all A-conjugates of $r_{f(a)}$, i.e.

$$\min(f) = \{ r_{f(a)}^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U}) \}.$$

 The family min(f) is well-defined up to non-orthogonality (independent of the choice of a ⊨ p and r_{f(a)} witnessing tp(a/f(a)A) is almost internal to a minimal type).

Definition

Let \mathcal{R} and \mathcal{S} be two families of all A-conjugates of minimal types r and s, respectively. Then $\mathcal{R} \not\perp \mathcal{S}$ if $r \not\perp s$.

- Let $f : p \to q$ be an indecomposable fibration. Fix $a \models p$. We know the fibre tp(a/f(a)A) is almost internal to some minimal type $r_{f(a)} \in S(B_{f(a)})$ with $B_{f(a)} \supseteq f(a)A$.
- We denote $\min(f)$ to be the set of all A-conjugates of $r_{f(a)}$, i.e.

$$\min(f) = \{ r_{f(a)}^{\tau} \mid \tau \in \operatorname{Aut}_{\mathcal{A}}(\mathcal{U}) \}.$$

 The family min(f) is well-defined up to non-orthogonality (independent of the choice of a ⊨ p and r_{f(a)} witnessing tp(a/f(a)A) is almost internal to a minimal type).

Definition

Let \mathcal{R} and \mathcal{S} be two families of all A-conjugates of minimal types r and s, respectively. Then $\mathcal{R} \not\perp \mathcal{S}$ if $r \not\perp s$.

• In our example, $\min(\pi_s) = \mathcal{R} \not\perp \{r\}$, $\min(f_s) = \{s\} \not\perp S$

Uniqueness condition

Theorem

Let $p \in S(A)$ be a stationary type of finite U-rank. Let

$$p \xrightarrow{f_n} p_n \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

be a composition analysis for p. Then for any other composition analysis,

$$p \xrightarrow{g_m} q_m \xrightarrow{g_{m-1}} \cdots \xrightarrow{g_1} q_1 \xrightarrow{g_0} ullet$$

for all i = 0, ..., n, there exits j = 0, ..., m such that $\min(f_i) \not\perp \min(g_j)$.

Uniqueness condition

Theorem

Let $p \in S(A)$ be a stationary type of finite U-rank. Let

$$p \xrightarrow{f_n} p_n \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} p_1 \xrightarrow{f_0} \bullet$$

be a composition analysis for p. Then for any other composition analysis,

$$p \xrightarrow{g_m} q_m \xrightarrow{g_{m-1}} \cdots \xrightarrow{g_1} q_1 \xrightarrow{g_0} ullet$$

for all i = 0, ..., n, there exits j = 0, ..., m such that $\min(f_i) \not\perp \min(g_j)$.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. Define $\min(p) = \min(f_n) \cup \cdots \cup \min(f_0)$ for some (any) composition analysis $p \xrightarrow{f_n} p_n \rightarrow \cdots \rightarrow p_1 \xrightarrow{f_1} \bullet$.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. Define $\min(p) = \min(f_n) \cup \cdots \cup \min(f_0)$ for some (any) composition analysis $p \xrightarrow{f_n} p_n \rightarrow \cdots \rightarrow p_1 \xrightarrow{f_1} \bullet$.

Example

min(r ⊗ s) = min(π_s) ∪ min(s → •) = R ∪ {s} where R was the set of A-conjugates of r|_b for some b ⊨ s.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. Define $\min(p) = \min(f_n) \cup \cdots \cup \min(f_0)$ for some (any) composition analysis $p \xrightarrow{f_n} p_n \rightarrow \cdots \rightarrow p_1 \xrightarrow{f_1} \bullet$.

Example

- min(r ⊗ s) = min(π_s) ∪ min(s → •) = R ∪ {s} where R was the set of A-conjugates of r|_b for some b ⊨ s.
- Also, min(r ⊗ s) = min(π_r) ∪ min(r → •) = S ∪ {r} where S was the set of A-conjugates of s|_a for some a ⊨ r.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. Define $\min(p) = \min(f_n) \cup \cdots \cup \min(f_0)$ for some (any) composition analysis $p \xrightarrow{f_n} p_n \rightarrow \cdots \rightarrow p_1 \xrightarrow{f_1} \bullet$.

Example

- min(r ⊗ s) = min(π_s) ∪ min(s → •) = R ∪ {s} where R was the set of A-conjugates of r|_b for some b ⊨ s.
- Also, min(r ⊗ s) = min(π_r) ∪ min(r → •) = S ∪ {r} where S was the set of A-conjugates of s|_a for some a ⊨ r.

• In our case,
$$\mathcal{R} \not\perp \{r\}$$
 and $\mathcal{S} \not\perp \{s\}$.

Definition

Let $p \in S(A)$ be a stationary type of finite *U*-rank. Define $\min(p) = \min(f_n) \cup \cdots \cup \min(f_0)$ for some (any) composition analysis $p \xrightarrow{f_n} p_n \to \cdots \to p_1 \xrightarrow{f_1} \bullet$.

Example

- min(r ⊗ s) = min(π_s) ∪ min(s → •) = R ∪ {s} where R was the set of A-conjugates of r|_b for some b ⊨ s.
- Also, min(r ⊗ s) = min(π_r) ∪ min(r → •) = S ∪ {r} where S was the set of A-conjugates of s|_a for some a ⊨ r.
- In our case, $\mathcal{R} \not\perp \{r\}$ and $\mathcal{S} \not\perp \{s\}$.
- Up to non-orthogonality, these agree and $\min(r \otimes s) = \{r\} \cup \{s\}$.

References

J. Freitag, L. Jimenez, and R. Moosa. Differential-algebraic permutation groups. 2023.

R. Moosa and A. Pillay.

Some model theory of fibrations and algebraic reductions. Selecta mathematica (Basel, Switzerland), 20(4):1067–1082, 2014.