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Assumptions

We work in a stable theory T eliminating imaginaries and assume all types
are of finite U-rank.

Fix U |= T , a sufficiently saturated model.

We will always assume A < U is a small subset of parameters and that
A = acl(A).
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Goal
For any finite rank stationary type p ∈ S(A), we can break it down into a
collection of minimal types.

Definition

A semi-minimal analysis for p is a sequence of A-definable maps

p = pn+1
fn−→ pn −→ · · · f1−→ p1

f0−→ •

such that:

1 U(pi+1) > U(pi ) for all i = 0, ..., n, and

2 For all i = 0, . . . , n, every fibre is almost internal to a minimal type.

Definition

A stationary type p ∈ S(A) is almost internal to a minimal type
r ∈ S(B) if there exists C ⊇ A∪B, a |= p|C and c1, ..., cn |= r |C such that
a ∈ acl(Cc1, ..., cn).

Are these minimal types ”unique”? Do they depend on the analysis?
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Fibrations
Let p, q ∈ S(A) stationary and f : p → q be an A-definable map.

Definition

A fibre of f : p → q is a type of the form tp(a/Af (a)) for a |= p.

f : p → q is a fibration if every (equivalently some) fibre of f is
stationary i.e. for every (some) a |= p there is a unique non-forking
extension of tp(a/Af (a)) to tp(a/ acl(Af (a))).

Definition

Let p ∈ S(A), q ∈ S(B) be stationary. We say p is orthogonal to q
denoted p ⊥ q if for all C ⊇ A ∪ B, a |= p|C , b |= q|C , a |⌣C b.

Example

Let p, q ∈ S(A) with p ⊥ q. Recall, p ⊗ q = tp(ab/A) for any a |= p and
b |= q.
The projection map πp : p ⊗ q → p is a fibration and for (a, b) |= p ⊗ q,
the fibre is q|a.
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No proper fibrations

Let p, q ∈ S(A) stationary and f : p → q be a fibration over A.

Definition

An A-definable map f : p → q is a fibration if every fibre of f is stationary.

Definition

A fibration f : p → q is finite-to-one if for every a |= p,
a ∈ acl(Af (a)).

A type p ∈ S(A) admits no proper fibrations if and only if for every
fibration over A f : p → q either q is algebraic or f is finite-to-one.

Example

Every minimal type admits no proper fibrations.
If U(p) = 1, f : p → q is a fibration then either U(q) = 0 in which case q
is algebraic or U(q) = 1. In this case p and q are interalgebraic over A.

Not every type admitting no proper fibrations is minimal!
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No proper fibrations and internality

Let p, q ∈ S(A) stationary and f : p → q be a fibration over A.

Definition

A fibration f : p → q is finite-to-one if for every a |= p,
a ∈ acl(Af (a)).

A type p admits no proper fibrations if and only if for every fibration
f : p → q either q is algebraic or f is finite-to-one.

Fact

[2, Proposition 2.3] Suppose p ∈ S(A) is a stationary non-algebraic type of
finite U-rank that admits no proper fibrations. Then p is almost internal
to a minimal type r ∈ (B).



Indecomposable fibrations
Let p, q ∈ S(A) and f : p → q be a fibration over A with U(p) > U(q).

Definition

A fibration f : p → q is finite-to-one if for every a |= p,
a ∈ acl(Af (a)).

A type p has no proper fibrations if and only if for every fibration
f : p → q either q is algebraic or f is finite-to-one.

Definition

A fibration f : p → q is indecomposable if whenever we have fibrations
g : p → r , h : r → q are fibrations with r ∈ S(A) and f = h ◦ g , either g
or h is finite-to-one.

Lemma

A fibration f : p → q is indecomposable if and only if for some (any)
a |= p, the fibre tp(a/f (a)A) admits no proper fibrations.

So f indecomposable =⇒ each fibre is almost internal to a minimal type.
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A fibration f : p → q is indecomposable if and only if for some (any)
a |= p the fibre tp(a/f (a)A) admits no proper fibrations.

Example

Let r , s ∈ S(A) be two minimal types and r ⊥ s.

The projection map πs : r ⊗ s → s is a fibration and for all
(a, b) |= r ⊗ s, the fibre is tp(ab/bA) = tp(a/bA) = r |b.
For all b |= s, r |b is minimal =⇒ πs is indecomposable

Fix c ∈ A. The map fs : s → • given by fs(b) = c for all b |= q. fs is
a fibration with a single fibre tp(b/cA) = tp(b/A) = s =⇒ fs is
indecomposable
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Composition analysis

Definition

Let p ∈ S(A) be a stationary type of finite U−rank. A composition
analysis for p is a sequence of fibrations over A

p = pn+1
fn−→ pn −→ · · · f1−→ p1

f0−→ •

such that

1 U(pi+1) > U(pi ) for all i = 0, ..., n, and

2 fi : pi+1 → pi is indecomposable for all i = 0, ..., n.
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1 U(pi+1) > U(pi ) for all i = 0, ..., n, and → fibres are non algebraic
and sequence terminates

2 fi : pi+1 → pi is indecomposable for all i = 0, ..., n. → ensures that
the fibres admit no proper fibrations

=⇒ the fibres of fi are all
almost internal to some minimal type

Every stationary type of finite U-rank has a composition analysis.
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What minimal types appear in a composition analysis?

Example

Let r , s ∈ S(A) be two minimal types and r ⊥ s.

The projection map πs : r ⊗ s → s is a fibration and for every
(a, b) |= r ⊗ s, the fibre is tp(ab/bA) = tp(a/bA) = r |b.

In this case, r |b(U) = r(U) so really each fibre is almost r -internal.

Let a, a′ |= p be distinct and f : p → q be a fibration over A.

In general, it is possible the fibre tp(a/f (a)A) is almost internal to a
minimal r ∈ S(B) and tp(a′/f (a′)A) is almost internal to a minimal
r ′ ∈ S(B ′) with B ̸= B ′.

So a minimal type appearing in a composition analysis might
depending on the choice of a fibre!

Also, is dependent on the choice of r to witness that tp(a/f (a)A) is
almost internal to a minimal type!

But we can get uniqueness up to non-orthogonality of families of
minimal types.
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What minimal types appear in a composition analysis?

Definition

Let B ⊇ A, r ∈ S(B) be minimal. By anA-conjugate of r we mean a
type r τ , which is obtained by applying some τ ∈ AutA(U) to the
formulas in r .

The set of all A-conjugates of r ∈ S(B) is
R = {r τ | τ ∈ AutA(U)}.
A family of types R is A-invariant if for every τ ∈ AutA(U),
whenever r ∈ R, then r τ ∈ R.

[1, Lemma 5.4] A type p ∈ S(A) is almost internal to an A-invariant
family of A-conjugates of a minimal type r ∈ S(B) if and only if p is
almost r -internal.
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What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality (
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality (
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality

(
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality (
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality (
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



What minimal types appear in a composition analysis?

Let f : p → q be an indecomposable fibration. Fix a |= p. We know
the fibre tp(a/f (a)A) is almost internal to some minimal type
rf (a) ∈ S(Bf (a)) with Bf (a) ⊇ f (a)A.

We denote min(f ) to be the set of all A-conjugates of rf (a), i.e.

min(f ) = {r τf (a) | τ ∈ AutA(U)}.

The family min(f ) is well-defined up to non-orthogonality (
independent of the choice of a |= p and rf (a) witnessing tp(a/f (a)A)
is almost internal to a minimal type).

Definition

Let R and S be two families of all A-conjugates of minimal types r and s,
respectively. Then R ̸⊥ S if r ̸⊥ s.

In our example, min(πs) = R ̸⊥ {r}, min(fs) = {s} ̸⊥ S



Uniqueness condition

Theorem

Let p ∈ S(A) be a stationary type of finite U-rank. Let

p
fn−→ pn

fn−1−−→ · · · f1−→ p1
f0−→ •

be a composition analysis for p. Then for any other composition analysis,

p
gm−→ qm

gm−1−−−→ · · · g1−→ q1
g0−→ •

for all i = 0, ..., n, there exits j = 0, ...,m such that min(fi ) ̸⊥ min(gj).

Definition

Let p ∈ S(A) be a stationary type of finite U-rank. Define
min(p) = min(fn) ∪ · · · ∪min(f0) for some (any) composition analysis

p
fn−→ pn −→ · · · −→ p1

f1−→ •.
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Defining min(p)

Definition

Let p ∈ S(A) be a stationary type of finite U-rank. Define
min(p) = min(fn) ∪ · · · ∪min(f0) for some (any) composition analysis

p
fn−→ pn −→ · · · −→ p1

f1−→ •.

Example

min(r ⊗ s) = min(πs) ∪min(s → •) = R∪ {s} where R was the set
of A-conjugates of r |b for some b |= s.

Also, min(r ⊗ s) = min(πr ) ∪min(r → •) = S ∪ {r} where S was the
set of A-conjugates of s|a for some a |= r .

In our case, R ̸⊥ {r} and S ̸⊥ {s}.
Up to non-orthogonality, these agree and min(r ⊗ s) = {r} ∪ {s}.
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