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Motivation

MAJOR GOAL: Understand the global structure of the class of
definable equivalence relations.

SUB-GOAL: Understand the complexity of hyperfinite equivalence
relations.

SUB-SUB-GOAL (this talk!): Understand the complexity of
“strongly” hyperfinite equivalence relations.
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Descriptive Set Theory Fundamentals

Let X be a Polish space (e.g., R).

For E an equivalence relation
on X , E is:

countable if each class of E is countable;

Borel if it is Borel as a subset of X 2.

CAUTION: “Countable” ̸= countably many pairs of points.

CBER = countable Borel equivalence relation.

Examples

1 Orbit equivalence relations of Borel actions of countable
discrete groups.

2 Connectedness relations of locally countable Borel graphs.
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Borel Reducibility

We compare CBERs by Borel reducibility.

Given (X ,E ), (Y ,F ), E ≤B F if there is a Borel f : X → Y such
that

x E y ⇐⇒ f (x) F f (y).

Equivalently: f induces an injection X/E → Y /F .

Intuitively: If E ≤B F , then E is “no more complicated than” F .

A CBER is smooth if it is Borel reducible to =R.
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Hyperfinite CBERs

A CBER E is (Borel) hyperfinite if there is a sequence
F0 ⊆ F1 ⊆ · · · of finite BERs with

E =
⋃
n∈N

Fn.

Example

The eventual equality relation E0 on {0, 1}N:

x E0 y ⇐⇒ ∃n0∀n ≥ n0(x(n) = y(n)).
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Dichotomy for Smoothness

There is a dichotomy theorem for smooth CBERs:

Theorem: Glimm–Effros Dichotomy

[Harrington–Kechris–Louveau] Let E be a CBER. If E is not
smooth, then E0 ≤B E .
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Borel Reducibility Hierarchy



A Dichotomy Theorem for Hyperfiniteness?

GOAL: Understand the region above E0.

MAJOR OPEN PROBLEM: Is there a dichotomy theorem for
hyperfinite CBERs?

Question

Is there a countable basis theorem for non-hyperfiniteness? That
is, is there a set (Fn)n∈N of CBERs such that

E non-hyperfinite =⇒ ∃n ∈ N with Fn ≤B E?
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A Dichotomy Theorem for Hyperfiniteness?

MAJOR OPEN PROBLEM: What is the complexity of
hyperfiniteness?

Question

[Dougherty–Jackson–Kechris] Is hyperfiniteness Σ1
2-complete?

If yes, then no dichotomy theorem for hyperfiniteness is possible.
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Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It’s sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

Borel actions of polycyclic groups
[Conley–Jackson–Marks–Seward–Tucker-Drob ’23];

Polynomial-growth Borel graphs [Bernshteyn–Yu];

The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin–Vaccaro];

The generic continuous action of Cantor space [Iyer–Shinko].



Borel Asymptotic Dimension: Motivation

MAJOR OPEN PROBLEM: Which groups have hyperfinite
actions?

Question

[Weiss] Is a Borel action of a countable amenable group
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Borel Asymptotic Dimension: Motivation

Motivation 2: Descriptive combinatorial properties that fail in the
context of hyperfinite graphs can be recovered for Borel graphs of
finite Borel asymptotic dimension:

Any graph of maximum degree d ≥ 3 not containing Kd is
d-colorable [Brooks].

There are acyclic Borel hyperfinite graphs of maximum degree
d with no Borel d-colorings
[Conley–Jackson–Marks–Seward–Tucker-Drob ’20].

Any Borel graph of maximum degree d ≥ 3 not containing Kd

whose Borel asymptotic dimension is finite is Borel d-colorable
[Bernshteyn–Weilacher].
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Borel Asymptotic Dimension: Definition

Intuitively: A graph G has Borel asymptotic dimension s if, for
each positive r , V (G) can be broken into uniformly bounded Borel
pieces such that the r -neighborhood of each vertex meets only
s + 1 pieces.
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Complexity of Finite Borel Asymptotic Dimension

Theorem

[Greb́ık–H., 2024] The set of locally finite Borel graphs with finite
Borel asymptotic dimension is Σ1

2-complete.

Proof sketch:

1 Reduce the geometric question of whether a graph has finite
Borel asymptotic dimension to a purely combinatorial question
on a special class of graphs.

2 Apply the general condition for Σ1
2-completeness due to

[Todorčević–Vidnyánszky] and [Frisch–Shinko–Vidnyánszky].
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Thank you!


