Hyperfiniteness, Borel Asymptotic Dimension, and Complexity

Cecelia Higgins (joint with Jan Grebík)

University of California, Los Angeles

2025 North American ASL Meeting - Combinatorics and Logic

MAJOR GOAL: Understand the global structure of the class of definable equivalence relations.

MAJOR GOAL: Understand the global structure of the class of definable equivalence relations.

SUB-GOAL: Understand the complexity of hyperfinite equivalence relations.

MAJOR GOAL: Understand the global structure of the class of definable equivalence relations.

SUB-GOAL: Understand the complexity of hyperfinite equivalence relations.

SUB-SUB-GOAL (this talk!): Understand the complexity of "strongly" hyperfinite equivalence relations.

Let X be a Polish space (e.g., \mathbb{R}).

• countable if each class of E is countable;

- countable if each class of E is countable;
- Borel if it is Borel as a subset of X^2 .

- countable if each class of E is countable;
- Borel if it is Borel as a subset of X^2 .

CAUTION: "Countable" \neq countably many pairs of points.

- countable if each class of E is countable;
- Borel if it is Borel as a subset of X^2 .

CAUTION: "Countable" \neq countably many pairs of points.

CBER = *countable Borel equivalence relation*.

- countable if each class of E is countable;
- Borel if it is Borel as a subset of X^2 .

CAUTION: "Countable" \neq countably many pairs of points.

CBER = *countable Borel equivalence relation*.

Examples

Orbit equivalence relations of Borel actions of countable discrete groups.

- countable if each class of E is countable;
- Borel if it is Borel as a subset of X^2 .

CAUTION: "Countable" \neq countably many pairs of points.

CBER = *countable Borel equivalence relation*.

Examples

- Orbit equivalence relations of Borel actions of countable discrete groups.
- Onnectedness relations of locally countable Borel graphs.

Given $(X, E), (Y, F), E \leq_B F$ if there is a Borel $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

Given $(X, E), (Y, F), E \leq_B F$ if there is a Borel $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

Equivalently: f induces an injection $X/E \rightarrow Y/F$.

Given $(X, E), (Y, F), E \leq_B F$ if there is a Borel $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

Equivalently: f induces an injection $X/E \rightarrow Y/F$.

Intuitively: If $E \leq_B F$, then E is "no more complicated than" F.

Given $(X, E), (Y, F), E \leq_B F$ if there is a Borel $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

Equivalently: f induces an injection $X/E \rightarrow Y/F$.

Intuitively: If $E \leq_B F$, then E is "no more complicated than" F.

A CBER is *smooth* if it is Borel reducible to $=_{\mathbb{R}}$.

A CBER *E* is *(Borel) hyperfinite* if there is a sequence $F_0 \subseteq F_1 \subseteq \cdots$ of finite BERs with

$$E=\bigcup_{n\in\mathbb{N}}F_n.$$

A CBER *E* is *(Borel) hyperfinite* if there is a sequence $F_0 \subseteq F_1 \subseteq \cdots$ of finite BERs with

$$E=\bigcup_{n\in\mathbb{N}}F_n.$$

Example

The eventual equality relation E_0 on $\{0,1\}^{\mathbb{N}}$:

$$x E_0 y \iff \exists n_0 \forall n \ge n_0 (x(n) = y(n)).$$

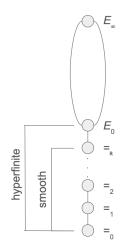
There is a dichotomy theorem for smooth CBERs:

There is a dichotomy theorem for smooth CBERs:

Theorem: Glimm-Effros Dichotomy

[Harrington–Kechris–Louveau] Let *E* be a CBER. If *E* is not smooth, then $E_0 \leq_B E$.

Borel Reducibility Hierarchy



MAJOR OPEN PROBLEM: Is there a dichotomy theorem for *hyperfinite* CBERs?

MAJOR OPEN PROBLEM: Is there a dichotomy theorem for *hyperfinite* CBERs?

Question

Is there a countable basis theorem for non-hyperfiniteness?

MAJOR OPEN PROBLEM: Is there a dichotomy theorem for *hyperfinite* CBERs?

Question

Is there a countable basis theorem for non-hyperfiniteness? That is, is there a set $(F_n)_{n \in \mathbb{N}}$ of CBERs such that

E non-hyperfinite $\implies \exists n \in \mathbb{N}$ with $F_n \leq_B E$?

A Dichotomy Theorem for Hyperfiniteness?

Question

Is there a countable basis theorem for non-hyperfiniteness? That is, is there a set $(F_n)_{n\in\mathbb{N}}$ of CBERs such that

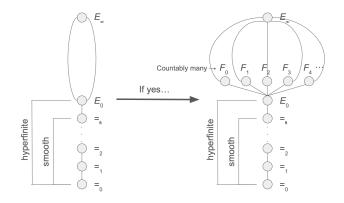
E non-hyperfinite $\implies \exists n \in \mathbb{N}$ with $F_n \leq_B E$?

A Dichotomy Theorem for Hyperfiniteness?

Question

Is there a countable basis theorem for non-hyperfiniteness? That is, is there a set $(F_n)_{n\in\mathbb{N}}$ of CBERs such that

E non-hyperfinite $\implies \exists n \in \mathbb{N}$ with $F_n \leq_B E$?



MAJOR OPEN PROBLEM: What is the complexity of hyperfiniteness?

MAJOR OPEN PROBLEM: What is the complexity of hyperfiniteness?

Question

[Dougherty–Jackson–Kechris] Is hyperfiniteness Σ_2^1 -complete?

MAJOR OPEN PROBLEM: What is the complexity of hyperfiniteness?

Question

[Dougherty–Jackson–Kechris] Is hyperfiniteness Σ_2^1 -complete?

If yes, then no dichotomy theorem for hyperfiniteness is possible.

Borel Asymptotic Dimension: Motivation

Finite Borel asymptotic dimension: A strong version of hyperfiniteness originating from the study of Borel extended metric spaces.

Motivation 1: It's sometimes easier to prove that a CBER is hyperfinite by showing it has finite Borel asymptotic dimension rather than by showing directly that it is hyperfinite:

 Borel actions of polycyclic groups [Conley–Jackson–Marks–Seward–Tucker-Drob '23];

- Borel actions of polycyclic groups [Conley–Jackson–Marks–Seward–Tucker-Drob '23];
- Polynomial-growth Borel graphs [Bernshteyn-Yu];

- Borel actions of polycyclic groups [Conley–Jackson–Marks–Seward–Tucker-Drob '23];
- Polynomial-growth Borel graphs [Bernshteyn-Yu];
- The action of a finitely generated hyperbolic group on its Gromov boundary [Naryshkin–Vaccaro];

- Borel actions of polycyclic groups [Conley–Jackson–Marks–Seward–Tucker-Drob '23];
- Polynomial-growth Borel graphs [Bernshteyn-Yu];
- The action of a finitely generated hyperbolic group on its Gromov boundary [Naryshkin–Vaccaro];
- The generic continuous action of Cantor space [lyer-Shinko].

MAJOR OPEN PROBLEM: Which groups have hyperfinite actions?

MAJOR OPEN PROBLEM: Which groups have hyperfinite actions?

Question

[Weiss] Is a Borel action of a countable amenable group hyperfinite?

 Any graph of maximum degree d ≥ 3 not containing K_d is d-colorable [Brooks].

- Any graph of maximum degree d ≥ 3 not containing K_d is d-colorable [Brooks].
- There are acyclic Borel hyperfinite graphs of maximum degree *d* with no Borel *d*-colorings [Conley–Jackson–Marks–Seward–Tucker-Drob '20].

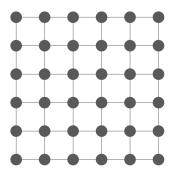
- Any graph of maximum degree d ≥ 3 not containing K_d is d-colorable [Brooks].
- There are acyclic Borel hyperfinite graphs of maximum degree *d* with no Borel *d*-colorings [Conley–Jackson–Marks–Seward–Tucker-Drob '20].
- Any Borel graph of maximum degree d ≥ 3 not containing K_d whose Borel asymptotic dimension is finite is Borel d-colorable [Bernshteyn–Weilacher].

Borel Asymptotic Dimension: Definition

Intuitively: A graph \mathcal{G} has Borel asymptotic dimension s if, for each positive r, $V(\mathcal{G})$ can be broken into uniformly bounded Borel pieces such that the r-neighborhood of each vertex meets only s + 1 pieces.

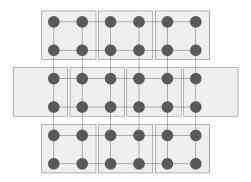
Borel Asymptotic Dimension: Definition

Intuitively: A graph \mathcal{G} has Borel asymptotic dimension s if, for each positive r, $V(\mathcal{G})$ can be broken into uniformly bounded Borel pieces such that the r-neighborhood of each vertex meets only s + 1 pieces.



Borel Asymptotic Dimension: Definition

Intuitively: A graph \mathcal{G} has Borel asymptotic dimension s if, for each positive r, $V(\mathcal{G})$ can be broken into uniformly bounded Borel pieces such that the r-neighborhood of each vertex meets only s + 1 pieces.



Theorem

[Grebík–H., 2024] The set of locally finite Borel graphs with finite Borel asymptotic dimension is Σ_2^1 -complete.

Theorem

[Grebík–H., 2024] The set of locally finite Borel graphs with finite Borel asymptotic dimension is Σ_2^1 -complete.

Proof sketch:

Reduce the *geometric* question of whether a graph has finite Borel asymptotic dimension to a *purely combinatorial* question on a special class of graphs.

Theorem

[Grebík–H., 2024] The set of locally finite Borel graphs with finite Borel asymptotic dimension is Σ_2^1 -complete.

Proof sketch:

- Reduce the *geometric* question of whether a graph has finite Borel asymptotic dimension to a *purely combinatorial* question on a special class of graphs.
- Apply the general condition for Σ₂¹-completeness due to [Todorčević–Vidnyánszky] and [Frisch–Shinko–Vidnyánszky].

Thank you!