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Descriptive Set Theory Fundamentals

Let X be a Polish space (e.g., R). For E an equivalence relation
on X, E is:

@ countable if each class of E is countable;
@ Borel if it is Borel as a subset of X2.

CAUTION: “Countable” # countably many pairs of points.

CBER = countable Borel equivalence relation.

@ Orbit equivalence relations of Borel actions of countable
discrete groups.

@ Connectedness relations of locally countable Borel graphs.
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Borel Reducibility

We compare CBERs by Borel reducibility.

Given (X, E),(Y,F), E <p F if there is a Borel f : X — Y such
that
xEy < f(x)F f(y).

Equivalently: f induces an injection X/E — Y/F.
Intuitively: If E <g F, then E is “no more complicated than” F.

A CBER is smooth if it is Borel reducible to =p.
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A CBER E is (Borel) hyperfinite if there is a sequence
Fo C F1 C --- of finite BERs with

E= UF,,.

neN

The eventual equality relation Ey on {0, 1}:

x Eyy <= 3JnoVn > no(x(n) = y(n)).
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There is a dichotomy theorem for smooth CBERs:

Theorem: Glimm—Effros Dichotomy

[Harrington—Kechris—Louveau] Let E be a CBER. If E is not
smooth, then Ey <pg E.




Borel Reducibility Hierarchy
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A Dichotomy Theorem for Hyperfiniteness?

Is there a countable basis theorem for non-hyperfiniteness? That
is, is there a set (F,)nen of CBERs such that

E non-hyperfinite = dn € N with F, <g E?
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A Dichotomy Theorem for Hyperfiniteness?

MAJOR OPEN PROBLEM: What is the complexity of
hyperfiniteness?

[Dougherty—Jackson—Kechris] Is hyperfiniteness X3-complete?

If yes, then no dichotomy theorem for hyperfiniteness is possible.
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Finite Borel asymptotic dimension: A strong version of
hyperfiniteness originating from the study of Borel extended metric
spaces.

Motivation 1: It's sometimes easier to prove that a CBER is
hyperfinite by showing it has finite Borel asymptotic dimension
rather than by showing directly that it is hyperfinite:

@ Borel actions of polycyclic groups
[Conley—Jackson—Marks—Seward—Tucker-Drob '23];

@ Polynomial-growth Borel graphs [Bernshteyn—Yu];

@ The action of a finitely generated hyperbolic group on its
Gromov boundary [Naryshkin—Vaccaro|;

@ The generic continuous action of Cantor space [lyer—Shinko].
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MAJOR OPEN PROBLEM: Which groups have hyperfinite
actions?

[Weiss] Is a Borel action of a countable amenable group
hyperfinite?
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Motivation 2: Descriptive combinatorial properties that fail in the
context of hyperfinite graphs can be recovered for Borel graphs of
finite Borel asymptotic dimension:

@ Any graph of maximum degree d > 3 not containing Ky is
d-colorable [Brooks].

@ There are acyclic Borel hyperfinite graphs of maximum degree
d with no Borel d-colorings
[Conley—Jackson—Marks—Seward—Tucker-Drob '20].

@ Any Borel graph of maximum degree d > 3 not containing Ky
whose Borel asymptotic dimension is finite is Borel d-colorable
[Bernshteyn—Weilacher].
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Complexity of Finite Borel Asymptotic Dimension

[Grebik—H., 2024] The set of locally finite Borel graphs with finite
Borel asymptotic dimension is Zi-complete.

Proof sketch:

© Reduce the geometric question of whether a graph has finite
Borel asymptotic dimension to a purely combinatorial question
on a special class of graphs.

@ Apply the general condition for X1-completeness due to
[Todorevi¢-Vidnyénszky] and [Frisch-Shinko—-Vidnyanszky].
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