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Problems in Geometric Measure Theory

The basic question: How large are sets?

Usually, by size we mean measure or some notion of dimension (e.g.
Hausdorff, box counting, packing, Assouad... ).

More precisely, what can we say about sets that we know have a
certain geometric property, or that are obtained by some natural
geometric operation on a set with known size?
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Fractal dimension

Hausdorff dimension: Measures the size of E ⊆ Rn by efficiently
covering E with balls of varying radii

Packing dimension: Measures the size of E ⊆ Rn by efficiently packing
as many balls as possible centered in E

In general, dimH(E ) ≤ dimP(E )
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Effective dimension

Definition

The effective Hausdorff dimension of a point x ∈ Rn relative to an oracle
A ⊆ N is given by

dimA(x) = lim inf
r→∞

KA
r (x)

r

Definition

The effective packing dimension of a point x ∈ Rn relative to an oracle
A ⊆ N is given by

DimA(x) = lim sup
r→∞

KA
r (x)

r
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The point-to-set principle

Effective dimension is directly related to classical dimension through the
following “point-to-set” principle(s):

Theorem (J. Lutz and N. Lutz, 2015)

For all E ⊂ Rn,
dimH(E ) = min

A⊆N
sup
x∈E

dimA(x)

and
dimP(E ) = min

A⊆N
sup
x∈E

DimA(x)
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k-planes and the Grassmanian

Let n ≥ 2 and 1 ≤ k ≤ n− 1 be given. We denote the set of k-planes
in Rn passing through the origin (the Grassmanian) by G(n, k).

The Grassmanian is a subset of the larger “affine” Grassmanian—the
set of all k-planes. We denote the affine Grassmanian by A(n, k).

We say that the “direction” of I ∈ A(n, k) is the unique element of
G(n, k) that is a translation of I .

There are a number of equivalent metrics we can define on the affine
Grassmanian, meaning we can talk about the Hausdorff and packing
dimension of subsets of A(n, k).
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A general question

Question: How large are unions of subsets of k-planes in Rn?

The Kakeya conjecture

If E ⊆ Rn contains a line in every direction, then E has Hausdorff
dimension n.

The (n, k)-Kakeya conjecture

Let k ≥ 2. If E ⊆ Rn contains a k-plane in every direction, then E has
positive Lebesgue measure.

The Furstenberg set problem

Let E ⊆ R2 be such that there is a Hausdorff dimension t set of lines,
each intersecting E in a set of Hausdorff dimension s. Then

dimH(E ) ≥ min{s + t, s + 1,
3s + t

2
}
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k-plane extension

Another sub-question: Suppose the subsets under consideration are all
large, e.g. the whole k-plane, nonempty interior, positive measure,
Hausdorff dimension k . Can their exact size affect the size of the union?

More precisely, given any E ⊆ Rn, let Ik(E ) ⊆ A(n, k) index the k-planes
intersecting E in a set of Hausdorff dimension k . Define

Pk(E ) = E ∪
⋃

I∈Ik (E)

I

Conjecture

Let E ⊆ Rn. For all 1 ≤ k ≤ n − 1,

dimH(E ) = dimH(Pk(E )) and dimP(E ) = dimP(Pk(E ))
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Results for lines

In R2:

(Keleti, 2014): Extending a collection of line segments to full lines
does not increase the Hausdorff dimension.

(Bushling and F., 2024) Extending a collection of Hausdorff
dimension 1 subsets of lines to full lines does not increase the packing
dimension. In particular, extending a set of line segments to full lines
does not increase the packing dimension.

In R3:

(Wang and Zahl, 2025): Extending a collection of line segments to
full lines does not increase the Hausdorff dimension.

In higher dimensions:

(Bushling and F., 2024): Extending a collection of line segments to
full lines does not increase the packing dimension to more than
2 dimP(E )− 1
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New results

In general, we have the following bound for the extension of k-planes:

Theorem (F., 2025)

Let E ⊆ Rn be a union of open subsets of k-planes. Then, if Fk is the set
formed by extending each of these subsets,

dimP(Fk) ≤ 2 dimP(E )− k

Moreover, we have an improved result for hyperplanes:

Theorem (F., 2025)

Let E ⊆ Rn. Then
dimP(Pn−1(E )) = dimP(E )
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Effectivization of k-plane extension

Using the point-to-set principle

dimP(E ) = min
A⊆N

sup
x∈E

DimA(x) = min
A⊆N

sup
I∈I

sup
x∈E∩I

DimA(x)

dimP(Fk) = min
A⊆N

sup
x∈Fk

DimA(x) = min
A⊆N

sup
I∈I

sup
x∈I

DimA(x)

So it suffices to show that for every A ⊆ N, I ∈ A(n, k), and S an
open subset of I ,

sup
x∈I

DimA(x) ≤ 2 sup
x∈S

DimA(x)− k
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Choosing points

Using the properties of the limit superior this follows if for every
x ∈ I , there exist y , z ∈ S such that,

KA
r (x) ≤ KA

r (y) + KA
r (z)− kr

Assume WLOG that the projection of S onto the first k-coordinates is
an open set.

Choose y so that it’s first k coordinates are random relative to x and
A; call this vector ŷ . We may also assume the line containing x and y
intersects S in a set of positive measure.

Hence, we may choose z on this line such that one of its first k
coordinates is random relative to x , y , and A ; call this coordinate ẑ .
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Completing the proof

Main idea: There exists some t ∈ R such that x = y + t(z − y). Hence a
precision r estimate of y , z , and t is enough to compute a (nearly)
precision r estimate of x and other unrelated information.

On one hand,

KA
r (x , ŷ , ẑ) ≤ KA

r (y , z , t)

≤ KA
r (y) + KA

r (z) + KA
r (t)

≤ KA
r (y) + KA

r (z) + r

On the other,

KA
r (x , ŷ , ẑ) = KA

r (x) + KA
r (ŷ , ẑ)

= KA
r (x) + KA

r (ŷ) + KA
r (ẑ)

= KA
r (x) + kr + r
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r (x) + KA
r (ŷ , ẑ)
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Sketch of the proof for hyperplanes I

Geometric lemma

Let n ≥ 2 and a hyperplane (a, b) = (a1, ...an−1, b) be given and assume
(u, v) = (u1, ...un−1, v) is a hyperplane such that
a1x1 + ...+ an−1xn−1 + b = u1x1 + ...+ un−1xn−1 + v . Let t ≤ r be the
largest precision up to which (a, b) and (u, v) agree. Then for every oracle
A,

KA
r (u, v) ≥ KA

t (a, b) + KA
r−t,r (x1, ...xn−1|a, b)− (n − 2)(r − t)− O(log r)

Idea: Two intersecting hyperplanes determine an (n − 2)-plane (with a
possible loss of precision). (n − 2)(r − t) bits of extra information
determine any specific point in this (n − 2)-plane.
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Sketch of the proof for hyperplanes II

Given a point x1, ..., xn−1, a1x1 + ...+ an−1xn−1, we can enumerate
the hyperplanes containing it.

Provided (a, b) is not too complex and any (u, v) containing the point
satisfies certain conditions, we can use this enumeration to bound the
complexity of (a, b) in terms of the complexity of the point.

We choose an oracle D at the given precision carefully so that the
first requirement holds and we do not sacrifice any more complexity
than necessary.

Applying the geometric lemma to a nearly random x1, ....xn (which we
have the freedom to pick) gives the second condition.

A short argument shows that the resulting lower bound on the
complexity of the point nearly matches a natural upper bound at
every precision, completing the proof.
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Sketch of the proof for hyperplanes II

Given a point x1, ..., xn−1, a1x1 + ...+ an−1xn−1, we can enumerate
the hyperplanes containing it.

Provided (a, b) is not too complex and any (u, v) containing the point
satisfies certain conditions, we can use this enumeration to bound the
complexity of (a, b) in terms of the complexity of the point.

We choose an oracle D at the given precision carefully so that the
first requirement holds and we do not sacrifice any more complexity
than necessary.

Applying the geometric lemma to a nearly random x1, ....xn (which we
have the freedom to pick) gives the second condition.

A short argument shows that the resulting lower bound on the
complexity of the point nearly matches a natural upper bound at
every precision, completing the proof.

Jacob Fiedler (UW Madison) Affine subspace extension ASL 2025 18 / 19



Sketch of the proof for hyperplanes II

Given a point x1, ..., xn−1, a1x1 + ...+ an−1xn−1, we can enumerate
the hyperplanes containing it.

Provided (a, b) is not too complex and any (u, v) containing the point
satisfies certain conditions, we can use this enumeration to bound the
complexity of (a, b) in terms of the complexity of the point.

We choose an oracle D at the given precision carefully so that the
first requirement holds and we do not sacrifice any more complexity
than necessary.

Applying the geometric lemma to a nearly random x1, ....xn (which we
have the freedom to pick) gives the second condition.

A short argument shows that the resulting lower bound on the
complexity of the point nearly matches a natural upper bound at
every precision, completing the proof.

Jacob Fiedler (UW Madison) Affine subspace extension ASL 2025 18 / 19



Sketch of the proof for hyperplanes II

Given a point x1, ..., xn−1, a1x1 + ...+ an−1xn−1, we can enumerate
the hyperplanes containing it.

Provided (a, b) is not too complex and any (u, v) containing the point
satisfies certain conditions, we can use this enumeration to bound the
complexity of (a, b) in terms of the complexity of the point.

We choose an oracle D at the given precision carefully so that the
first requirement holds and we do not sacrifice any more complexity
than necessary.

Applying the geometric lemma to a nearly random x1, ....xn (which we
have the freedom to pick) gives the second condition.

A short argument shows that the resulting lower bound on the
complexity of the point nearly matches a natural upper bound at
every precision, completing the proof.
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Sketch of the proof for hyperplanes II

Given a point x1, ..., xn−1, a1x1 + ...+ an−1xn−1, we can enumerate
the hyperplanes containing it.

Provided (a, b) is not too complex and any (u, v) containing the point
satisfies certain conditions, we can use this enumeration to bound the
complexity of (a, b) in terms of the complexity of the point.

We choose an oracle D at the given precision carefully so that the
first requirement holds and we do not sacrifice any more complexity
than necessary.

Applying the geometric lemma to a nearly random x1, ....xn (which we
have the freedom to pick) gives the second condition.

A short argument shows that the resulting lower bound on the
complexity of the point nearly matches a natural upper bound at
every precision, completing the proof.
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Thank you!
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