Properties of Selector Proofs

Elijah Gadsby

CUNY Graduate Center

ASL North American Annual Meeting May 2025

・日・ ・ ヨ ・ ・ ヨ ・

Let $S \subseteq T$ be consistent, elementary-recursively axiomatisable, and contain $I\Sigma_0 + Exp$. We assume that S is Σ_1 -sound.

- $x:_T y$ will be a standard proof predicate
- $\Box_T y$ will be the corresponding provability predicate for $T: \exists x(x; Ty)$
- We shall omit Gödel codes and write $x:_T A$, $\Box_T A(x)$ etc.

Our results are all relative to a fixed proof predicate for T. The situation changes when the proof predicate is allowed to vary and non-standard proof predicates are admitted (Santos, Sieg and Kahle, 2023).

- A serial property is an effectively enumerated sequence $\{F_n\}$ of formulas
- We will focus on the case where {*F_n*} consists of all instances of a single formula

What does it mean to say that T proves a serial property?

- Instance provability is not enough
- (Assuming that ZF is consistent) $PA \vdash \neg \underline{n}:_{ZF} \bot$ for each n

・ 同 ト ・ ヨ ト ・ ヨ ト

= nar

Definition

A formula $F(\vec{x})$ is selector provable in T (over the base theory S) if there is an S-recursive function $s(\vec{x})$ such that

$$S \vdash \forall \vec{x}(s(\vec{x}): TF(\vec{x}))$$

From such a selector proof, it follows by explicit reflection that $T \vdash F(\underline{\vec{n}})$ for each \vec{n} (without metamathematical assumptions on T).

(1) マン・ (1) マン・ (1)

Various formulas are selector provable, but not provable.

Theorem (Artemov)

The formula $\neg(x:_{PA}\perp)$ is selector provable in PA. There is an elementary-recursive function s(x) such that

 $I\Sigma_0 + Exp \vdash \forall x(s(x):_{PA} \neg (x:_{PA} \bot))$

Artemov argues his particular function s(x) is a formalisation of a contentual consistency proof for *PA*. We will not address the matter.

Other useful examples (for PA) include:

- For each formula A(x), the formula TI(α, A) asserting transfinite induction for A(x) up to the ordinal α < ϵ₀
- The formula ∃y(F_{ϵ0}(x) = y) asserting the totality of the fast-growing function F_{ϵ0}.

However, $\exists y(F_{\epsilon_0+1}(x) = y)$ is not selector provable.

Can we characterise the selector-provable formulas?

Proposition (Ignjatović, Kurahashi, Sinclaire) Let $F(\vec{x})$ be Δ_1 in S. Then $S \vdash \forall \vec{x} \Box_T F(\vec{x}) \leftrightarrow (Con(T) \rightarrow \forall \vec{x} F(\vec{x}))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Corollary

T selector proves the consistency of *W* (over *S*) iff $S \vdash Con(T) \rightarrow Con(W)$

In other words, T selector proves the consistency of W iff W is relatively consistent with T.

Corollary (Kurahashi-Sinclaire)

If $W \supseteq T + Con(T)$, then $S \not\vdash \forall x \Box_T \neg (x:_W \bot)$

・ロ・・(型・・モー・・モー・

I nar

Are selector proofs a useful tool in proof theory?

Theorem (Freund and Pakhomov 2020)

Let T be the theory $PA + SRefl_{\Sigma_1}(PA)$. Then there is an elementary recursive function s(x) such that

$$I\Sigma_0 + Exp \vdash \forall x(s(x):_{PA} \neg (x:_T \bot))$$

Thus $I\Sigma_0 + Exp \vdash Con(PA) \rightarrow Con(PA + SRefl_{\Sigma_1}(PA))$

Proof Outline.

- Embed the proof into an infinitary proof system with the ω -rule.
- An instance of ∃y(F_{e0}(x) = y) (that depends on the proof) implies that it is not a proof of the empty sequent.
- The role of the selector is to give the proof of the relevant instance of $\exists y (F_{\epsilon_0}(x) = y)$

Corollary

For each $\alpha < \epsilon_0$, there is an elementary recursive function s(x) such that

$$I\Sigma_0 + Exp \vdash \forall x(s(x):_{PA} \neg (x:_{T_{\alpha}} \bot))$$

where $T_{\alpha} = PA + SCon^{\alpha}(PA)$

- For finite iterates, this can also be established by bounding the length of the Gentzen reduction procedure in terms of F_{ε0}.
- These selector proofs are contentual in Artemov's sense.

Can we extend the characterisation of the selector-provable formulas?

Proposition

Let Γ be a set of formulas containing every Σ_1 formula or every Π_1 formula. There is no set of sentences Δ such that for each formula $F(\vec{x})$ in Γ

 $S \vdash \forall \vec{x} \Box_T F(\vec{x})$ iff $S + \Delta \vdash \forall \vec{x} F(\vec{x})$

Proof sketch for the Σ_1 case.

- The explicit reflection formula y:_TF(x) → F(x) is selector provable in T for each formula F.
- So if the equivalence holds, then $S + \Delta \vdash \mathsf{Refl}_{\Sigma_1}(T)$
- But then $S + \Delta \vdash Con(T + Con(T))$ which is not selector provable.

= nav

One layer of coding allows for new formulas to become (selector) provable. What about additional layers of coding?

Definition

A formula $F(\vec{x})$ is 2-selector provable in T (over S) if there are S-recursive functions $r(\vec{x})$ and $s(\vec{x})$ such that

 $S \vdash \forall \vec{x}(r(\vec{x}): \tau(s(\vec{x}): \tau F(\vec{x})))$

Can this get us anything new?

No!

Proposition

If a formula is 2-selector provable, then it is selector provable.

This contrasts with the case for iterated provability predicates, where there is a strict hierarchy (Kushida 2020).

・ロト ・ 一下・ ・ ヨト・

= nar

- While primitive recursive selectors (in other words $S = I\Sigma_1$) seem more than sufficient for ordinary purposes, in principle the full proof-theoretic strength of T is needed in the base theory.
- (Wainer, Schwichtenberg) A function is provably recursive in *PA* iff it is elementary recursive in F_{α} for some $\alpha < \epsilon_0$.

Theorem

For each $2 \le \alpha < \epsilon_0$, there is a (Δ_1 in PA) formula F(x) that is selector provable in PA by a selector elementary recursive in F_{α} , but not by any selector elementary recursive in F_{β} for $\beta < \alpha$.

A similar construction works for other theories.

ヘロン 不可と 不可と イロン

- Sergei Artemov. "Serial properties, selector proofs and the provability of consistency". In: Journal of Logic and Computation (July 2024).
- Anton Freund and Fedor Pakhomov. "Short Proofs for Slow Consistency". In: Notre Dame Journal of Formal Logic 61.1 (2020), pp. 31–49.
- Elijah Gadsby. "Properties of Selector Proofs". In preparation.
- Hirohiko Kushida. "Constructive truth and falsity in Peano arithmetic". In: Journal of Logic and Computation 31.1 (Dec. 2020), pp. 168–178.
- Wilfried Sieg, Paulo Guilherme Santos and Reinhard Kahle. "A new perspective on completeness and finitist consistency". In: Journal of Logic and Computation 34.6 (Apr. 2023), pp. 1179–1198.

ヘロン 不可と 不可と イロン

э.