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Notation

Let S ⊆ T be consistent, elementary-recursively axiomatisable, and contain
IΣ0 + Exp. We assume that S is Σ1-sound.

x :T y will be a standard proof predicate

□T y will be the corresponding provability predicate for T : ∃x(x :T y)
We shall omit Gödel codes and write x :TA, □TA(x) etc.

Our results are all relative to a fixed proof predicate for T . The situation
changes when the proof predicate is allowed to vary and non-standard proof
predicates are admitted (Santos, Sieg and Kahle, 2023).
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Serial Properties

A serial property is an effectively enumerated sequence {Fn} of formulas

We will focus on the case where {Fn} consists of all instances of a single
formula

What does it mean to say that T proves a serial property?

Instance provability is not enough

(Assuming that ZF is consistent) PA ⊢ ¬n:ZF⊥ for each n
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Selector Proofs

Definition

A formula F (x⃗) is selector provable in T (over the base theory S) if there is an
S-recursive function s(x⃗) such that

S ⊢ ∀x⃗(s(x⃗):TF (x⃗))

From such a selector proof, it follows by explicit reflection that T ⊢ F (n⃗) for
each n⃗ (without metamathematical assumptions on T ).
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Selector-Provable Formulas

Various formulas are selector provable, but not provable.

Theorem (Artemov)

The formula ¬(x :PA⊥) is selector provable in PA. There is an
elementary-recursive function s(x) such that

IΣ0 + Exp ⊢ ∀x(s(x):PA¬(x :PA⊥))

Artemov argues his particular function s(x) is a formalisation of a contentual
consistency proof for PA. We will not address the matter.
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Selector-Provable Formulas

Other useful examples (for PA) include:

For each formula A(x), the formula TI (α,A) asserting transfinite
induction for A(x) up to the ordinal α < ϵ0

The formula ∃y(Fϵ0(x) = y) asserting the totality of the fast-growing
function Fϵ0 .

However, ∃y(Fϵ0+1(x) = y) is not selector provable.
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∆1 formulas

Can we characterise the selector-provable formulas?

Proposition (Ignjatović, Kurahashi, Sinclaire)

Let F (x⃗) be ∆1 in S. Then

S ⊢ ∀x⃗□TF (x⃗) ↔ (Con(T ) → ∀x⃗F (x⃗))
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Consistency Statements

Corollary

T selector proves the consistency of W (over S) iff S ⊢ Con(T ) → Con(W )

In other words, T selector proves the consistency of W iff W is relatively
consistent with T .

Corollary (Kurahashi-Sinclaire)

If W ⊇ T + Con(T ), then S ̸⊢ ∀x□T¬(x :W⊥))
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Extensions of PA

Are selector proofs a useful tool in proof theory?

Theorem (Freund and Pakhomov 2020)

Let T be the theory PA+ SReflΣ1(PA). Then there is an elementary recursive
function s(x) such that

IΣ0 + Exp ⊢ ∀x(s(x):PA¬(x :T⊥)

Thus IΣ0 + Exp ⊢ Con(PA) → Con(PA+ SReflΣ1(PA))
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Extensions of PA

Proof Outline.

Embed the proof into an infinitary proof system with the ω-rule.

An instance of ∃y(Fϵ0(x) = y) (that depends on the proof) implies that it
is not a proof of the empty sequent.

The role of the selector is to give the proof of the relevant instance of
∃y(Fϵ0(x) = y)
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Extensions of PA

Corollary

For each α < ϵ0, there is an elementary recursive function s(x) such that

IΣ0 + Exp ⊢ ∀x(s(x):PA¬(x :Tα⊥))

where Tα = PA+ SConα(PA)

For finite iterates, this can also be established by bounding the length of
the Gentzen reduction procedure in terms of Fϵ0 .

These selector proofs are contentual in Artemov’s sense.
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Σn and Πn formulas

Can we extend the characterisation of the selector-provable formulas?

Proposition

Let Γ be a set of formulas containing every Σ1 formula or every Π1 formula.
There is no set of sentences ∆ such that for each formula F (x⃗) in Γ

S ⊢ ∀x⃗□TF (x⃗) iff S +∆ ⊢ ∀x⃗F (x⃗)
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Σn and Πn formulas

Proof sketch for the Σ1 case.

The explicit reflection formula y :TF (x⃗) → F (x⃗) is selector provable in T
for each formula F .

So if the equivalence holds, then S +∆ ⊢ ReflΣ1(T )

But then S +∆ ⊢ Con(T + Con(T )) which is not selector provable.
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Iterated Selectors

One layer of coding allows for new formulas to become (selector) provable.
What about additional layers of coding?

Definition

A formula F (x⃗) is 2-selector provable in T (over S) if there are S-recursive
functions r(x⃗) and s(x⃗) such that

S ⊢ ∀x⃗(r(x⃗):T (s(x⃗):TF (x⃗)))

Can this get us anything new?
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Iterated Selectors

No!

Proposition

If a formula is 2-selector provable, then it is selector provable.

This contrasts with the case for iterated provability predicates, where there is a
strict hierarchy (Kushida 2020).
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The Choice of Base Theory

While primitive recursive selectors (in other words S = IΣ1) seem more
than sufficient for ordinary purposes, in principle the full proof-theoretic
strength of T is needed in the base theory.

(Wainer, Schwichtenberg) A function is provably recursive in PA iff it is
elementary recursive in Fα for some α < ϵ0.

Theorem

For each 2 ≤ α < ϵ0, there is a (∆1 in PA) formula F (x) that is selector
provable in PA by a selector elementary recursive in Fα, but not by any selector
elementary recursive in Fβ for β < α.

A similar construction works for other theories.
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