The Shannon effect

Bjgrn Kjos-Hanssen

May 14, 2025
ASL annual meeting

Shannon effect

> almost all Boolean functions have nearly the same circuit
complexity as the hardest function

> ‘most objects are almost maximally complicated

Intuition

Random numbers between 0 and 1000000. Are any of them
“simple”?
> 549313
502773
633402
141214

>
| 2
| 2
> 559494

Let B, = {0,1}{01}" the class of Boolean functions
f:{0,1}" — {0, 1}.
Definition (Wegener [Weg87, 4.1.1])

Almost all functions f of a class F, C B, have property P

means: fer fh p
Lo HFEF | fhas PY

n—o0 |Fn‘

1.

Definition (Wegener [Weg87, 4.1.2])

For a complexity measure CM and a class of functions F,,

CM(F,) = CM(F).
(Fn) max (f)

Definition (Wegener [Weg87, 4.1.3])

The Shannon effect is valid for a class of functions F, and a
complexity measure CM if

CM(f) Z CM(JTn) - O(CM(]:n))

for almost all f € F,.
(Presumably it means that for each € > 0,

CM(F,) — CM(f)
CM(F7) B

3

holds for almost all f.)

History

» Shannon (1916-2001) [Sha49] conjectures the effect

» Lupanov (1932-2006) [Lup58] proves and [Lup70] names the
effect

Example: Kolmogorov complexity

C(w) =the length of the shortest program that outputs w. This is
machine-dependent but only up to an additive constant.

Kolmogorov (1903-1987)
[Kol65] proved
C(w) <|w|+ O(1).

Kolmogorov preparing

for a lecture.
Solomonoff (1926-2009) [Sol64a, Sol64b] and Kolmogorov

observed [{w € {0,1}": C(w) > n— k}| > 2"(1 — 27%).

Prefix-free Kolmogorov complexity

Definition
K (w) =shortest program outputting w for a programming
language where no prefix of a valid program is valid.

Theorem (Levin 1971/1974)
K(w) < |w|+2log|w|+ O(1) and C(w) < K(w) + O(1).
The theorem implies the Shannon effect for K as well.

But Kolmogorov complexity is not a computable function,
so we turn to...

Finite automata

A deterministic finite automaton (DFA) is a 5-tuple
M= (Q,X%,d, qo, F) where

> Q@ is a finite set of states;

> > is a finite alphabet;

> §:Q x X — Q is a transition function;

> qp € Q is an initial state;

» [C Q is a set of final states.

Language recognized by DFA

Let € be the empty word. We define §* : Q@ x X* — Q by recursion:

6*(q75) = 4q
6*(g,xa) = 6(6%(q,x),a)

forx € X*and a € X.
L(M) ={x:6"(qo,x) € F}

is the language recognized by M.

Automatic complexity of distinguishing

Definition (Shallit and
Wang 2001)

Let x € {0,1}". The
automatic complexity
A(x) of x is the least
|Q| over all DFAs M
with

L(M)n{0,1}" = {x}.

Example

A(0101010101) = 3;
A(01) = 2.

Figure: Jeff Shallit

Automatic complexity of distinguishing

De Gruyter Series in Logic and its Applications (2024)

DE GRUYTER

Bjorn Kjos-Hanssen

AUTOMATIC
COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

All exercises come with Lean solutions (but no English solutions)

Automatic complexity

Shallit and Wang
proved that for almost
all x of any sufficiently
large length n, A(x) <
(3/4)n+(log n)(n/8)1/?
and A(x) > n/13.

Open problem: Is there
a Shannon effect for
automatic complexity?

It turns out to be easier to understand a more complicated
notion...

Nondeterminism

A nondeterministic finite automaton (DFA) is a 5-tuple
M= (Q,X%,d, qo, F) where

> Q@ is a finite set of states;

> > is a finite alphabet;

> §:Q x X — P(Q) is a transition function;

> qo € Q is an initial state;

» [C Q is a set of final states.

Language recognized by NFA

Let ¢ be the empty word. We define 6* : Q x ¥* — P(Q) by

§*(q,e) = {q}
0*(q,xa) = U o(r,a)
red*(q,x)

forx e X*and a € X.
L(M) ={x:6"(qo,x) € F}

is the language recognized by M.

State sequences

Let M be an NFA. An accepting state sequence for x = Xxg . . . Xp—1
in M, where x; € ¥ for 0 < i < n, is a sequence (qo,- .., qn) where
gi € Q and

gi+1 € 67(qi, x;)
foreach 0 <ji<n, and g, € F.
Let P(x, M) be the set of accepting state sequences for x in M.

Nondeterministic automatic complexity Ay

We say that an NFA M uniquely accepts x if
> [P, M)| = 1;
> |P(x,M)| =0 for all y # x, |y| = |x|.
Definition
An(x) is the minimum of |Q| over all NFAs M which uniquely
accept x.

Equivalently (7)...

Definition

Ane(x) is the minimum of |Q| over all NFAs M with
L(M) N {0, 1} = {x}.

The e in Ne stands for “exactly accepts”.

Lemma
ANe(X) < AN(X)-
Since "only one path implies only one word".

Robustness question

> Apne is a direct analogue of A;
> Ay is easier to compute in practice*.
*Python

Question
Is AN = ANe ?

Shannon effect for Ay

Tm+1

T T2 x3 T4 Tm-1 Tm
P
Sta,rt _>. B @
ke~
Tn Tpn—1 Tp—2 Tp—3 Tm+3 Tm+2

» Hyde 2013: For all words

x, An(x) < |x]/2 4+ 1.
> K. 2021:

An(x) > |x]/(2 + ¢€) for
Kayleigh Hyde, MA almost all words x.
Mathematics from UH,

2013

Understanding Ay

The witnessing automata will always be “forests of cycles” laid out
in Kleene—Brouwer order. Example for 0°10°1°0103

Permutation automatic complexity

Definition
APE™M (%) is the minimum number of states of a DFA accepting x
and no other word of length |x| — and such that each function

q — d(a, q) is bijective.

Example
APE™M(00010) < 6 as witnessed by this DFA (missing edges are
self-loops):

0 0 0 1 0
e e
start —— qo - Q1 - q2 g3 q4

~—— -~
_/ ! 0

0

Permutation automatic “complexity”

> K. 2017: AP (w) < |w|+ 1 (using construction that loops
back to conclude a cycle) (upon formalization, realized it
should be viewed as: loops back to maintain injectivity)

» Anthony Quas 2020: AP*™(w) > |w|+ 1 (“this proof
somewhat resembles that of the Morse-Hedlund theorem in
symbolic dynamics.")

» Shannon effect is trivial: AP*"™(w) = |w| + 1 for all w.

Formalization in Lean

| formalized Hyde's theorem. The struggles of doing so revealed
that the construction is best viewed via the idea of the NFA
generated by a path rather than directly as an NFA.

/-- Hyde's theorem (2013). -/
theorem A_N_bound {A : Typex} {n : N} (w : Fin n > A) :
AN w £ n/2+1 := find_le <| hyde_all_lengths w

Lean details

/-- The transition function & generated by a labeled path|
6§ br ={s | s is reachable in one step from r reading b}|
-/
def &_of_path {A Q : Typex} {n : N} (w : Fin n > A)
(p ¢ Fin (n+1) > Q) (b = A) (r : Q) :=
{s | 3t: Finn,
p t.castSucc = r A p t.succ = s A w t = b}

/-- Kayleigh Hyde's transition function 6. -/
def khd' {A : Typex} {k : N} (w : Fin (2xk+1) > A) :
A > Fin (k+1) » Set (Fin (k+1)) :=
6_of_path w fun t =>
dite (t.1 < k + 1) ({t.1, .))
({2 * k + 1 - t.1, flipCast .))

Things that need a proof...

Iff : [k] — [k] with f(0) =0 and f(k) = k and f(x+1) <
f(x) + 1 for all x, then f is the identity.

/-- Discrete Racecar Principle. -/
lemma exact_racecar {k : N} {f : Fin (k+1) » Fin (k+1)}
(he : £ 0 =0) (hk : f (Fin.last k) = (Fin.last k))
(h : ¥ (s : Fin k),
(f s.succ).1
< (f s.castSucc).1 + 1) {a : Fin k} :
f a.castSucc = a.castSucc

Recent news about Ap,

Chen, K., Koswara,
Richter, Stephan (2025),
submitted [CKHK'25]
prove the Shannon effect
also for Ape.

4 of the authors are based in Singapore

Conclusions

» The Shannon effect usually holds but a precise statement to
the effect that it “always” does is missing.

» Formalizing mathematics can help reveal its structure.

References |

[d Joey Chen, Bjgrn Kjos-Hanssen, lvan Koswara, Linus Richter,
and Frank Stephan.
Languages of words of low automatic complexity are hard to
compute, 2025.
Submitted.

[A. N. Kolmogorov.
Three approaches to the definition of the concept “quantity of

information”.
Problemy Peredaci Informacii, 1(1):3-11, 1965.

[§ O.B. Lupanov.
The synthesis of contact circuits.
Dokl. Akad. Nauk SSSR (N.S.), 119:23-26, 1958.

[§ O. B. Lupanov.
The schemes of functional elements with delays.
Problemy Kibernet., (23):43-81, 303, 1970.

References |l

[@ Claude E. Shannon.
The synthesis of two-terminal switching circuits.
Bell System Tech. J., 28:59-98, 1949,

@ R. J. Solomonoff.
A formal theory of inductive inference. I.
Information and Control, 7:1-22, 1964.

[@ R. J. Solomonoff.
A formal theory of inductive inference. Il.
Information and Control, 7:224-254, 1964.

[§ Ingo Wegener.
The complexity of Boolean functions.
Wiley-Teubner Series in Computer Science. John Wiley &
Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1987.

	Introduction

