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Winning strategies in Σ0
1 games

Winning nodes (for player I) get ranked 0.
Inductively assign ordinals to nodes, through ωCK

1 , resp. ωR
1 .

Unranked nodes get labeled ∞ and are wins for II.
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Winning strategies for I in Σ0
2 games

Inductively rank nodes, through σ,

I the least Σ1
1 reflecting ordinal,

I the least ordinal which is Π1 gap-reflecting on admissibles,

I the closure point of Σ1
1 monotone inductive definitions,

I the closure point of Σ2 definitions in the µ-calculus,

I the closure point of feedback hyperarithmetic computations,

I the closure point of parallel feedback Turing computations,

I the least Σ1
1 Ramsey ordinal,

I the least non-Gandy ordinal.
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Winning strategies for II in Σ0
2 games

II must satisfy a Π0
2 formula: ∀i ∃j φ(i , j),

i.e. an ω sequence of
open games. II restricts their play to W , the set of their non-losing
nodes.
Easily, there is a strategy in Lσ+ .

Proposition

There is a bound strictly less than σ+ by which every Σ0
2 game has

a winning strategy.
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(Non-)Gandy ordinals

Definition
α is Gandy if the order-types of the well-orderings of α which are
∆1(Lα) are cofinal in α+.

Let δ be the supremum of the order-types of the σ-recursive
well-orderings of σ.
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δ and winning strategies

Lemma
δ is the least upper bound of ranks of winning nodes for II in any
game ∃j φ(i , j).

Theorem
δ is the least ordinal β such that every Σ0

2 game has a winning
strategy with witness definable over Lβ.
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Refinement and question

Question: Is there a game such that II has a winning strategy
strictly between σ and δ (even though the proof that it’s winning is
at best definable over Lδ)?

Answer: Yes! Let II play a model of “V = Lσ”; I needs to show
that II’s model is incorrect, by finding an infinite descending
sequence through it, or showing it fails Π1 gap-reflection.
Question: Is there a game such that II’s first winning strategy is
only definable over Lδ? Or does every game have a w.s. in Lδ
(albeit without a witness of such)?
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Possible approaches

Goal: Build a winning strategy for II without using the ordinals
through δ.
Idea 1: Use ordinal notations, i.e. σ-recursive well-orderings of σ.

Idea 2: Work in a model M with standard ordinal part σ, because
WM ⊆W (where W is the set of winning nodes for II).
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Model theory question

Consider II’s L-least winning strategy for the game in which II
must build a model of V = Lσ+ . The model II builds with this
strategy has ordinal standard part σ.

Task: Understand the model II builds in the face of I’s challenges.
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