On Winning Strategies in Σ_2^0 Games

Juan Aguilera, Vienna Univ. of Technology and Ghent Univ. Robert Lubarsky, Florida Atlantic University

> ASL 2025 North American Annual Meeting NMSU, Las Cruces, NM May 13-16, 2025

(日本) (日本)

Winning strategies in Σ_1^0 games

Winning nodes (for player I) get ranked 0. Inductively assign ordinals to nodes, through ω_1^{CK} , resp. ω_1^R . Unranked nodes get labeled ∞ and are wins for II.

Winning strategies for I in Σ_2^0 games

Inductively rank nodes, through σ ,

- the least Σ_1^1 reflecting ordinal,
- the least ordinal which is Π₁ gap-reflecting on admissibles,
- the closure point of Σ¹₁ monotone inductive definitions,
- the closure point of Σ_2 definitions in the μ -calculus,
- the closure point of feedback hyperarithmetic computations,
- the closure point of parallel feedback Turing computations,
- the least Σ_1^1 Ramsey ordinal,
- the least non-Gandy ordinal.

Winning strategies for II in Σ_2^0 games

II must satisfy a Π_2^0 formula: $\forall i \exists j \phi(i,j)$,

Winning strategies for II in Σ_2^0 games

- II must satisfy a Π_2^0 formula: $\forall i \exists j \phi(i, j)$, i.e. an ω sequence of open games. II restricts their play to W, the set of their non-losing nodes.
- Easily, there is a strategy in L_{σ^+} .

< 回 > < 三 > < 三 >

Winning strategies for II in Σ_2^0 games

II must satisfy a Π_2^0 formula: $\forall i \exists j \phi(i, j)$, i.e. an ω sequence of open games. II restricts their play to W, the set of their non-losing nodes.

Easily, there is a strategy in L_{σ^+} .

Proposition

There is a bound strictly less than σ^+ by which every Σ_2^0 game has a winning strategy.

(Non-)Gandy ordinals

Definition

 α is **Gandy** if the order-types of the well-orderings of α which are $\Delta_1(L_{\alpha})$ are cofinal in α^+ .

(日) (日) (日)

臣

(Non-)Gandy ordinals

Definition

 α is **Gandy** if the order-types of the well-orderings of α which are $\Delta_1(L_{\alpha})$ are cofinal in α^+ .

Let δ be the supremum of the order-types of the $\sigma\text{-recursive}$ well-orderings of $\sigma.$

δ and winning strategies

Lemma

 δ is the least upper bound of ranks of winning nodes for II in any game $\exists j \ \phi(i, j)$.

(日) (日) (日)

臣

δ and winning strategies

Lemma

 δ is the least upper bound of ranks of winning nodes for II in any game $\exists j \ \phi(i, j)$.

Theorem

 δ is the least ordinal β such that every Σ_2^0 game has a winning strategy with witness definable over L_{β} .

・ 同・ ・ ヨ・

A 3 >

Refinement and question

Question: Is there a game such that II has a winning strategy strictly between σ and δ (even though the proof that it's winning is at best definable over L_{δ})?

・ 同 ト ・ ヨ ト

Refinement and question

Question: Is there a game such that II has a winning strategy strictly between σ and δ (even though the proof that it's winning is at best definable over L_{δ})? Answer: Yes! Let II play a model of " $V = L_{\sigma}$ "; I needs to show that II's model is incorrect, by finding an infinite descending sequence through it, or showing it fails Π_1 gap-reflection.

• (1) • (2) • (3) • (3) • (3)

Refinement and question

Question: Is there a game such that II has a winning strategy strictly between σ and δ (even though the proof that it's winning is at best definable over L_{δ})? Answer: Yes! Let II play a model of " $V = L_{\sigma}$ "; I needs to show that II's model is incorrect, by finding an infinite descending sequence through it, or showing it fails Π_1 gap-reflection. Question: Is there a game such that II's first winning strategy is only definable over L_{δ} ? Or does every game have a w.s. in L_{δ} (albeit without a witness of such)?

(4月) (4日) (4日)

Possible approaches

Goal: Build a winning strategy for II without using the ordinals through δ . Idea 1: Use ordinal notations, i.e. σ -recursive well-orderings of σ .

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Possible approaches

Goal: Build a winning strategy for II without using the ordinals through δ .

Idea 1: Use ordinal notations, i.e. σ -recursive well-orderings of σ . Idea 2: Work in a model M with standard ordinal part σ , because $W^M \subseteq W$ (where W is the set of winning nodes for II).

Model theory question

Consider II's L-least winning strategy for the game in which II must build a model of $V = L_{\sigma^+}$. The model II builds with this strategy has ordinal standard part σ .

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Model theory question

Consider II's L-least winning strategy for the game in which II must build a model of $V = L_{\sigma^+}$. The model II builds with this strategy has ordinal standard part σ . Task: Understand the model II builds in the face of I's challenges.

• (1) • (

References

- FRED ABRAMSON AND GERALD SACKS, Uncountable Gandy Ordinals, Journal of the London Math. Soc., Vol. 14 (2) (1976), pp. 387-392
- JUAN AGUILERA, The Order of Reflection, Journal of Symbolic Logic, Vol. 86 (2021), pp. 1555–1583
- JUAN AGUILERA AND ROBERT LUBARSKY, Feedback Hyperjump, Journal of Logic and Computation, Vol. 31 No. 1, Jan. 2021, pp. 20–39, https://doi.org/10.1093/logcom/exaa085
- ▶ JUAN AGUILERA AND ROBERT LUBARSKY, On Winning Strategies for F_{σ} Games, Journal of Symbolic Logic, to appear
- RICHARD GOSTANIAN, The Next Admissible Ordinal, Annals of Mathematical Logic, v. 17 (1979), pp. 171-203
- ► CHRISTOPH HEINATSCH AND MICHAEL MÖLLERFELD, The determinacy strength of Π¹₂-comprehension, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 1462–1470
- YIANNIS MOSCHOVAKIS, Descriptive Set Theory, 2nd edition, American Mathematical Society, 2009
- P. WOLFE, The strict determinateness of certain infinite games, Pacific Journal of Mathematics, vol. 5 (1955), pp. 841-847