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Motivation

Question. How complicated is (true) arithmetic?

What could be an answer?

1 Axiomatization:

Incompleteness theorem
Undefinability of truth

2 Computing a model:

Tennenbaum’s theorem
Non-standard models of PA have infinite Scott rank (Montalbán-Rossegger)

3 Distinguishing the models:

Separate Mod(T ) from other structures.
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Setting

Assume the language L is (at most) countable and relational. All structures will
be assumed to have domain ω. Fix an enumeration {φi}i∈ω of atomic
L ∪ ω-sentences (using ω as constants).

For any L-structure M, its atomic diagram can be encoded by the path pM ∈ 2ω,
where pM(i) = 1 ⇐⇒ M ⊨ φi and 0 otherwise. Identify M with pM.

Throughout, let T be a (consistent) first-order L-theory. Let Mod(T ) ⊆ 2ω be the
set of all countable models of T . We can analyze its complexity under the usual
Polish topology on 2ω, and it turns out to be always Borel.

Question. What is the relationship between the complexity of Mod(T ) and that
of T?

To answer that, we need to define what “complexity” means in both contexts.
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The Borel Hierarchy

We will be using the Borel hierarchy (Σ0
α,Π

0
α,∆

0
α) as our measure of complexity

for Mod(T ) ⊆ 2ω.
Connections to computability theory:

Theorem

For any recursive ordinal α,

Σ0
α =

⋃
X∈2ω

Σα(X),Π0
α =

⋃
X∈2ω

Πα(X),∆0
α =

⋃
X∈2ω

∆α(X).

Basically, we can effectively recover a Borel set from its code.

Theorem

f : 2ω → 2ω is continuous if and only if it is computable relative to some oracle
X ∈ 2ω.
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Quantifier Alternation Hierarchy

We have a similar hierarchy on the formula side.

Definition

∃1 = {∃xR(x) : R quantifier-free}, ∀1 = {∀xR(x) : R quantifier-free}
∃n+1 = {∃xR(x) : R ∈ ∀n}, ∀n+1 = {∀xR(x) : R ∈ ∃n}

Remark. In the context of arithmetic this is different from Σ0
n,Π

0
n due to bounded

quantifiers. However, over PA, it’s safe to use either as long as n ≥ 1 (by MRDP).

By induction, Mod(φ) is Π0
n if φ ∈ ∀n. A converse to this is formulated using

infinitary logic.
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Infinitary Logic

The infinitary logic Lω1ω is obtained from first-order logic by allowing countable
conjunctions and disjunctions (but still referring to only finitely many free
variables in a single formula). To form a similar hierarchy, we treat countable
conjunctions like universal quantifiers (and similarly for countable disjunctions),
resulting in the classes Πin

α and Σin
α .

Theorem (López-Escobar; Vaught)

If A ⊆ 2ω is isomorphism-invariant (in particular if A = Mod(φ) for some
sentence φ), then it is Π0

α iff it is Mod(ψ) for some ψ ∈ Πin
α .

This gives an upper bound of Mod(T )’s complexity.

Corollary

Mod(T ) is always Π0
ω.

If T is axiomatizable by ∀n (or ∃n−1) sentences, then Mod(T ) is Π0
n.
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The Result for Arithmetic

Theorem (Andrews, Gonzalez, Lempp, Rossegger, Z.)

Mod(TA) and Mod(PA) are both Π0
ω-complete.

Idea. Given a Π0
ω set P =

⋂
n Pn (where Pn is Π0

n), we will build a continuous
reduction f such that f(p) ⊨ TA when p ∈ P and f(p) ̸⊨ PA when p /∈ P . Thus f
witnesses the Π0

ω-hardness for both Mod(TA) and Mod(PA).

Fact

For each n ≥ 1, Th∃n(TA) + ¬BΣn is consistent.

Take Tn to be any completion of the above theory.

Construction. Starting from n = 1, check if p ∈ Pn. If not, proceed to make f(p) a
model of Tn (and stop). Otherwise, make the “∃n-fragment” of f(p) satisfy
Th∃n(TA), increment n, and repeat.
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General Unbounded Theories

Key. Even if we have committed to a “complete” ∃n-fragment, there is still a
“switch” on a higher level that we can turn off to deviate from the target theory.

This allows us to generalize the above argument to a large class of theories.

Definition (Boundedly Axiomatizable Theory)

A theory T is boundedly axiomatizable (bounded for short) if for some n < ω, T has
an axiomatization consisting entirely of ∀n sentences. (T is unbounded otherwise.)

Theorem (AGLRZ)

If T is complete, then T is unbounded ⇐⇒ Mod(T ) is Π0
ω-complete.

Remark. The assumption of completeness is necessary: there are unbounded
theories with a (strictly) ∆0

ω class of models.
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The Unbounded Case

Proof. (⇐) If T is ∀n-axiomatizable then Mod(T ) is Π0
n, thus not Π

0
ω-hard.

(⇒) Follow the outline, and check two things.

1 The construction is possible.
In general, checking whether p ∈ Pn cannot be done continuously. However,
we can approximate it effectively (as we approximate the theory):

Theorem (Solovay; Knight)

Let T be a complete theory. Suppose R ≤T X is an enumeration of a Scott set S,
with functions tn, ∆

0
n(X) uniformly in n, such that: for each n, lims tn(s) is an

R-index for Th∃n(T ); and for all s, tn(s) is an R-index for a subset of Th∃n(T ).
Then X can compute a model M ⊨ T representing S.

We make extensive use of the uniformity of the above theorem.
2 The desired complete theories Tn’s exist.

We just need Th∃n(T ) = Th∃n(Tn) and T ̸= Tn. If this is not possible, then T
is axiomatized by Th∃n(T ), a contradiction.
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Examples: Sequential Theories

Corollary

If T is a completion of PA, then Mod(T ) is Π0
ω-complete.

Proof.

No consistent extension of PA is bounded (Rabin).

It turns out that there is a large class of unbounded theories:

A theory is sequential if, roughly speaking, it is able to encode finite sequences.
(It directly interprets adjunctive set theory, i.e. ∅ exists; and for all x, y, we have x ∪ {y} exists.)

Theorem (Enayat, Visser)

Every complete sequential theory in a finite language is unbounded.

Examples of sequential theories include PA,PA−,ZF, etc. and their extensions.
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The Bounded Case

We can also analyze Mod(T ) when T is bounded, even if it is incomplete:

Theorem (AGLRZ)

For any n ∈ ω and any theory T (not necessarily complete):

1 T is not ∀n-axiomatizable ⇒ Mod(T ) is Σ0
n-hard. Thus,

T is ∀n-axiomatizable ⇐⇒ Mod(T ) ∈ Π0
n.

2 T is not ∃n-axiomatizable ⇒ Mod(T ) is Π0
n-hard. Thus,

T is ∃n-axiomatizable ⇐ Mod(T ) ∈ Σ0
n.

3 T is ∀n- but not ∃n-axiomatizable ⇐⇒ Mod(T ) is Π0
n-complete.

4 T is ∃n-axiomatizable ⇒ Mod(T ) ∈ Π0
n+1.

(3) is immediate from (1) (2), and (4) follows from López-Escobar, so the hard
work goes in (1) and (2) (which are proved similarly).
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The Bounded Case

Lemma

Suppose n ∈ ω, and T+ ̸= T− are complete theories with Th∃n(T
−) ⊆ Th∃n(T

+).
Then for any P ∈ Σ0

n, there is a continuous reduction f such that f(x) ∈ Mod(T+)
if x ∈ X, and f(x) ∈ Mod(T−) otherwise.
In particular, Mod(T+) is Σ0

n-hard, and Mod(T−) is Π0
n-hard.

Remark. This is like stopping the construction for unbounded theories at level n.

Proof.

Given p ∈ 2ω, Feed these ingredients to Solovay’s theorem:

R: comes from a fixed oracle.

tk for k < n: output a fixed R-index of Th∃k(T
−) = Th∃k(T

+).

tn: check whether p ∈ P using p(n−1); keep outputting index of Th∃n(T
−)

until the Σn outcome (i.e. witness p ∈ P ), then switch to Th∃n(T
+).

tk for k > n: compute membership and then output the correct index.
13 / 18 Hongyu Zhu The Borel Complexity of Mod(T )



Tightness

Examples showing the ∃n result is “tight”:
Remark. Using Marker’s extension, one can make these work for larger values of n.

Example

Let L consist of just one unary relation P , and T says P is infinite and coinfinite.
Then T is ∃1-axiomatizable and ℵ0-categorical (thus complete). Mod(T ) is
Π0

2-complete. [In fact, by our convention, Mod(T ) ∈ Σ0
2 ⇒ Mod(T ) = ∅.]

Example

T = Th(2 ·Q+ 1 +Q, <, S) is axiomatizable by a single ∃3 sentence and
ℵ0-categorical. Mod(T ) is Σ0

3-complete.

Example

Use a 2-sorted language to combine a ∃2 −Π0
3 example and a ∃3 −Σ0

3 example:
this gives a ∃3 −∆0

4 (strict) example.
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Connection to Infinitary Logic

While infinitary logic is more expressive than first-order logic, it does not do so
more efficiently (in terms of quantifier complexity). We give a quick proof:

Theorem (Keisler 1965; Harrison-Trainor, Kretschmer 2023)

If a finitary formula φ is equivalent to a Πin
n formula ψ, then φ is actually

equivalent to a finitary ∀n formula.

Proof.

By compactness, it suffices to show T = {φ} is ∀n-axiomatizable. This is
immediate as Mod(T ) = Mod(ψ) is Π0

n.

It turns out that this is, in a sense, equivalent to our theorem. It’s also interesting
that Keisler used games to approximate formulas, Harrison-Trainor and
Kretschmer used arithmetic forcing, while we used (complicated) priority
argument, which is effective.
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Further Questions

Characterize the Wadge degrees occupied by Mod(T )?
In particular, how do they differ from the degrees that are Scott complexities?

Can more be said about the Π0
ω case when T is incomplete (and not

sequential)?

More effective analysis on oracles?
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Thank you for listening!
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