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Narya

Narya is an experimental interval-free proof assistant
for higher-dimensional mathematics.

https://github.com/gwaithimirdain/narya
® Higher observational type theory

® |nternally parametric type theory
® Displayed type theory


https://github.com/gwaithimirdain/narya

@ Dependent type theory
@ Higher observational type theory

© Some technical details



Core language

The core language of Narya is a dependent type theory like those of
Rocq, Agda, and Lean.
® Dependent function types (x:A) — B x with application
f a and abstraction x — f x (note syntax).
® A universe Type with Type : Type . No universe checking!
e No unification or implicit arguments yet.
® However, verbosity is decreased by bidirectional typechecking:
® Un-annotated x +— x checks at any type A — A .
® Un-annotated f a synthesizes B a if £ synthesizes

(x:A) — B x and 'a checks at A .
® To write a redex, you must ascribe the function:
((x = x) : A — A) a

® NbE-based typechecker with n-conversion: £ = x — f x



Records

def ¥ (A : Type) (B: A — Type) : Type = sig (
fst : A,
snd : B fst)

® An unlabeled tuple like (a, b) checks at any record with the
right number of fields (of the right type).

A labeled tuple like (fst := a, snd := b) checks at any
record with fields having those names (and types).

Fields are projected out with indices or labels, and spaces:

p .0 p -fst

A projection synthesizes, if the head 'p synthesizes a record.

Records satisfy n-conversion: 'p = (p .fst, p .snd) .



Parsing field projections

Field projections are left-associative like function applications:
f (g a).fld b means ((f (g a)) .fld) b

This is the correct choice when application is juxtaposition.
It allows chained method calls without parentheses

object .methodOne x y z
.methodTwo a b
.methodThree c d e
.methodFour



Datatypes

def List (A : Type) : Type = data [
| nil.

cons. (x : A) (xs:List A) ]

® A constructor like cons. b bs checks at any datatype with

that constructor name, if its arguments check correctly.
Constructors end with ., dually to how fields begin with

Numerals 0, '1,...parse to zero., suc. zero. , ...

Matches with recursion, using an ML-like syntax:

def len (A : Type) (xs :List A) : N := match xs [
| nil. — O
| cons. _xs — 1 + len xs ]

but with an ending delimiter ] .

No termination or positivity checking!



Matches, variables, and contexts

You can match on any (synthesizing) term, not just a variable:

def last (A : Type) (xs : List A) : Maybe A
‘= match reverse xs [

| nil. — none.

| cons. x _+~ some. x ]

If you do match on a variable, the goal and the context refine:

def suc_pred (n: N) (H:n # 0) : suc. (pred n) = n
‘= match n [

| zero. — match H refl [ ]

| suc. k — refl (suc. k) 1

® In the zero. branch, the type of H is 0 # 0.

® |n the suc. branch, the goal reduces to suc. k = suc. k.

When matching on a non-variable, you can refine the goal explicitly
with match M return x +— P x (and “convoy” the context).



Fancy datatypes

Datatypes can be indexed:

def Vec (A : Type) : N — Type = data [

| nil. : Vec A O

| cons. (n:N) (x:A) (xs:Vec An) :Vec A (n+1) ]

Indexed matches refine the goal and context if all indices are distinct
variables (more restrictive than Agda —-without-K: no unification yet).

Families of definitions can be mutually inductive and/or recursive,
including induction-induction and induction-recursion:

def ctx : Type = data [
| empty.
| ext. ([:ctx) (A:ty ) ]

and ty (I : ctx) : Type = data [
| base.

| pi. (A:ty ) (B:ty (ext. [ A)) 1]



Fancy matches

Matches can be deep:

def half (n: N) : N := match n [

| zero. — zero.

| suc. zero. — =zero.

suc. (suc. n) — suc. (half n) ]

Matches can be multiple:

def conj (x y : Bool) : Bool
| true., true. — true.

match x, y [

| true., false. r— false.
| false., _ +— false. ]

® Both expanded at parse time into sequential matches.

® The programmer controls and can easily see the case tree
® Exact splits are required.



Codatatypes

Codatatypes are defined using a “self” variable:

def Stream (A : Type) : Type = codata [
| s .head : A
| s .tail : Stream A ]

def M (A : Type) (B: A — Type) : Type = codata [
| s .recv: A
| s .send : B (s .recv) — M A B ]

® Methods of a codatatype are called like fields of a record:

s .head s .tail b
e Codatatypes are inhabited by copatterns and corecursion:
def zeros : Stream N = [
| .head — O

| .tail —~ zeros ]

® No productivity or positivity checking yet!



Canonical types in case trees

A novel feature: canonical types can be defined inside a match.

def Covec (A : Type) (n : N) : Type := match n [
| zero. — sig ()

| suc. n — sig (
car : A,
cdr : Covec A n) ]

Then
® Covec A 0 is a unit type

® Covec A 1 is a record type isomorphic to A

® Covec A 2 is a record type isomorphicto A X A
® etc.

but they are all canonical and don't reduce to anything.



Mixfix notations

User-defined mixfix notations with precedence and associativity.

notation 1 plus : x "+" y ... = plus x y

notation 2 times : x "*¥" y ... = times x y

notation O ite : "if" b "then" x "else" y = ite b x y
notation 1.5 types : [ "F" a "::" A = types [ a A
notation 3 interp : "[" M "]" = interp M

® Unicode operators are allowed, delimited by spaces.

e ASCII operators don't require spaces: x+y, x-y, x:A.

® Special built-ins like [= , [, ['= don't require spaces, and
have ASCII equivalents =>, |->, :=.



Namespaces and imports

Uses Yuujinchou by Favonia/RedPRL for namespacing.
® These both define foo.bar , which is in namespace foo :

def foo.bar = ...

section foo =
def bar = ...
end
® Patch foo by defining new constants starting with foo.

® |Import other source files, with a powerful suite of modifiers:

import "file" | in foo renaming bar baz

® Notations are stored in the notations namespace:

import "filel" | except notations
import "file2" | union (renaming . file2, only notations)

After typechecking a file, a compiled version is written to disk for
faster future loading.



Interactive coding and proof

® ProofGeneral Emacs mode allows progressive processing and
undoing while working on a source file, like Rocq.

® Can also leave holes 7, view their inferred types and contexts,
and fill them later, like Agda.

® Can split in a hole, automatically inserting abstractions, tuples,
or comatches based on its type.

® No tactics yet.

® An opinionated automatic formatter reformats files on load
and commands when processed interactively (by default),
also changing ASCIl => into Unicode — etc.



@ Dependent type theory
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© Some technical details



|dentity types

First principle of HOTT

For x : A and y : A, we have an identity type Id A x y.

Second principle of HOTT

For x : A, we have a reflexivity term refl x : Id A x x,
which synthesizes if x does.

We regard the definition of Id A (and hence also Id (Id A) ,
Id (Id (Id A)) etc.) as part of the definition of A .

Similarly, the definition of refl x is part of the definition of x .

For example. . .



Observational identity types
The type Id (A X B) p q behaves as if it were defined by

def Id_AXB_p_q : Type = sig (
fst : Id A (p .fst) (q .fst)
snd : Id B (p .snd) (q .snd))

This makes it behave almost exactly like
Id A (p .fst) (q .fst) x Id B (p .snd) (q .snd) :
@ Given r : Id (A X B) p g, we have

r .fst : Id A (p .fst) (q .fst)
r .snd : Id B (p .snd) (q .snd)

® Given s : Id A (p .fst) (q .fst)
and t :Id B (p .snd) (q .snd) , we have

(s, t) :I1d (A X B) pgq



Observational reflexivity

Similarly, reflexivity is defined on each term-former:

refl (a, b) = (refl a, refl b)
refl (p .fst) (refl p) .fst
refl (p .snd) = (refl p) .snd

These compute from left to right. However, since records have
n-conversion, it follows that for any p : A X B we have

refl p = (refl (p .fst), refl (p .snd))



More observational identity types

® TId (List A) xs ys behaves as if it were defined by

def Id ListA : List A — List A — Type = data [
| nil. : Id ListA nil. nil.
| cons. : {xo x1 : A} (x2:1Id A %0 x1)

{xsp xs1 : List A} (xsp : Id_ListA xsgp xsi)

— Id _ListA (coms. xg xsg) (comns. x; xs1) |
These constructors check at it, and can be matched against.

This makes encode-decode proofs marginally simpler.

® Id (Stream A) s t behaves as if it were defined by

def Id_StreamA (s t : Stream A) : Type = codata [
| u .head : Id A (s .recv) (t .recv)
| u .tail : Id StreamA (s .tail) (t .tail) ]

These destructors apply to it, and can be comatched against.
Equality in codatatypes is bisimulation, by definition.



Observational function types
Id (A — B) £ g behaves as if it were defined to equal

{x0 x1 : A} (x2:1Id A x0 x3) — Id B (f x0) (g x1) .
This is a little more complicated than the naively expected

(x:A) — Id B (f x) (g x).

® Once we have transport, we can prove them equivalent.
® The former is required for parametricity (when no transport).
® For £ : A — B, we get that refl f is "ap”, with type

{x0 %1 : A} (x2:1Id A x9 x3) — Id B (f x0) (f x1) .

Third principle of HOTT

All constructions preserve equality, in separately defined ways.




Computation with ap

Supposing ap : Id A ag aj , we have:

refl ((x — (f x, gx)) :A =+ B X C) ap
= (refl f ap, refl g aj)

Supposing pp : Id (A X B) pg p1. we have:

refl ((x — x .fst) : A X B = A) p» = p» .fst

refl ((x — x .snd) : A X B — B) po = p2 .snd

Implemented internally using “higher-dimensional substitutions”.



On “definitions” of the universe

Traditional perspective (“meaning explanations” and “lower” OTT)
The universe is inductively defined by type-formers as constructors.
® The Tarski eliminator E1 is (inductive-)recursively defined.

® 14 is also recursively defined with clauses for each constructor,
eg. Id (A x B) = Id A x Id B.

® Justifies type-case, not univalence.

HOTT perspective

The universe is coinductively defined by E1 and Id as destructors.

® TId is coinductive: Id of a type is another family of types.

® Each type-former is defined corecursively, by specifying
El (i.e. its intro/elim/. . .rules) and Id (which are generally
other instances of the same type-former).

e Justifies univalence, as we will see. ..



Bisimulations of types

® Equality in a coinductively defined type is “bisimulation”.
® |Intuitively, two systems are bisimilar if there is a
correspondence between their “states” such that

@ Any state in one system corresponds to some state in the other.
@ The “subsequent behavior” (coinductive destructors) of
corresponding pairs of states are also bisimilar, coinductively.

Fourth principle of HOTT

Id Type A B behaves like it consists of bisimulations:

def isBisim (A B:Type) (R:A—B—Type) : Type = codata [
.trr : A — B

.liftr : (a:A) -+ R a (x .trr a)

.trl: B — A

J1iftl : (b:B) — R (x .trl b) b

.id ¥ (ao a1:A) (bo bl:B) (I‘()!R agp bo) (I'l:R. a] bl)
— isBisim (Id A ap a;) (Id B by by) ... 1]

where . .. is some correspondence induced by R (TBD).

Ea T T T



Behavior of Id Type

Introduction

For R: A — B — Type and Rb : isBisim A B R, we have
glue A B R Rb : Id Type A B.

Any A : Id Type Ag A; gives rise to:

® Given ag : Ap and aj : A;, have Ay ap aj : Type .

® Given ap : Ag, have Ay .trr ag : A .

® Given ag : Ag, have A> .1liftr ag : Ay ag (A> .trr ag) .
® Given aj : Ay, have Ay .trl ap : Ag.

® Given aj : A7, have A> .1iftl aj : Ap (A .trl a;) aj .
Something TBD for “A, .id"...



Behavior of Id Type

Introduction

For R: A -+ B — Type and Rb : isBisim A B R, we have
glue A B R Rb: Id Type A B.

Any A : Id Type Ap A; gives rise to:

® Given ag : Ap and aj : A, have Ay ap aj : Type .

® trr, liftr, trl, 1liftl

Computation

For a: A and b : B, the type glue A B R Rb a b behaves like
def glueABR a b : Type = sig ( unglue : R a b )

and glue A B R Rb .trr etc. compute to the fields of Rb .



Behavior of Id Type

Introduction

For R: A — B — Type and Rb : isBisim A B R, we have
glue A B R Rb : Id Type A B.

Any A : Id Type Ag A; gives rise to:

® Given ag : Ap and aj : A;, have Ay ap aj : Type .

e trr, liftr, trl, liftl

Consistency

For A : Type with a : A and b : A, we have

Id Aab = refl A ab.



Heterogeneous equality
For B: A — Type, if ap : Id A ag a; we have
refl B ap : Id Type (B ag) (B a1) .
Thus, for bg : B ag and by : B a; , we have a type
refl B ap bg by : Type
of dependent or heterogeneous equalities.

These figure in Id of dependent records and functions:
® For B:A—=Type, Id (X A B) p q behaves like

def Id_>AB p_q : Type = sig (
fst : Id A (p .fst) (q .fst),
snd : refl B fst (p .snd) (q .snd))

® For B:A—Type, Id ((x:A)—B x) f g behaves like

{xo x1 : A} (%2 :Id A x9 x1) — refl B x (f x0) (g x1)



Co-univalence

If Ay : Id Type Ao A1, then Ay .trr : Ag — A; and
A, .trl : Ay — Ag are inverse equivalences.

Proof.
Given ag : Ag, have A, .liftr ag : A» ag (A, .trr ag) and

Ay .1iftl (A .trr ag)
: Ay (Ay .trl (A> .trr ag)) (Ar .trr ag)

Therefore, we have an induced bisimulation between

Id Ag ag (Ap .trl (Ap .trr ap)) and
Id A; (Ay .trr ag) (A, .trr ag) .

Thus, since refl (A .trr ap) inhabits the latter, the former is
also inhabited. The other direction is dual. ]



Univalence

If £ : A — B is an equivalence, then

(ab+ Id B (f a) b) : A - B — Type

is a bisimulation. Hence we get ua f : Id Type A B.

Main idea of proof.

If £: A — B is an equivalence, so is each

refl £ {ap} {ai} : Id A ag a1 — Id B (f ap) (f a1)

Therefore, we can use corecursion. OJ



The more things change. ..

On the n-Category Café blog comments, December 2009:

Peter Lumsdaine: ...asking a [space] to be contractible involves arbitrary
high dimensions, and I'm not sure what kind of language ...would let you
talk about that...a type may have infinitely high non-trivial structure. ..

[but] you can only work with. . . finite-dimensional approximations.

Me: One way. . .to talk about contractibility is by coinduction. If A is
contractible. .. (1) A is inhabited, and (2) for any x,y € A, homa(x, y) is
contractible. Moreover, contractibility is maximal with this property. . .
Peter Lumsdaine: ...you might well also want to talk about [equivalences]
defined coinductively, as. . .in e.g. [Eugenia] Cheng “An w-category with all
duals is an w-groupoid”.

Then Voevodsky came along and we went on a 15-year detour. ..



Status of the implementation

® Run narya -hott to get the HOTT implementation.

e Everything I've described so far is implemented except that the
fields trr, etc. don't compute.

® Warning: highly in flux, syntax is likely to change.

e Omitting -hott gives an internally parametric type theory,
with Id but no trr.

® Here we can define a notion of “fibrancy” that models HOTT.
® Everything is proven to compute except trr on the universe.

® Can vary the —arity and -internal-ness of parametricity.
® “External” unary case is a version of displayed type theory, in
which we can define semi-simplicial types (jww Kolomatskaia).
® Eventually ~hott will always be on, and other “directions” of
parametricity can coexist with it.



Remarks on the implementation

27,000 lines of OCaml

Normalization by evaluation

Dependently typed programming

® |ntrinsically well-scoped De Bruijn indices
® Type-level dimensions

Algebraic effects
Thanks to Favonia/RedPRL

® Yuujinchou: imports, scoping
Asai: error reporting
Algaeff: algebraic effects
Bwd: backwards lists
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What's missing

® The complete type of id in isBisim.
® Something to represent id acting on A : Id Type Ap A .
O A “lie.



Completing” the definition of bisimulation

Any R:A—B—Type induces

refl R : {ap ai:A} (a2:Id A ag a;) {bo b1:B} (bp:Id B by b1)
— Id Type (R ag bp) (R a; by)

So if we have ag a; : A and bg by : B, and also rg:R agp bg
and ri:R a; by, then

(a2 bp +—> refl R a» by rg r1) : Id A ag a1 — Id B by by — Type

and this is what appears in the method id of isBisim:

def isBisim (A B:Type) (R:A—B—Type) : Type = codata [
| x .trr: A — B
| .liftr : (a:A) — R a (x .trr a)
| .trl : B — A
| .1iftl : (b:B) — R (x .trl b) b
| .id " (ag a1:A) (bg b1:B) (ro:R ap bg) (ri:R a; bi)
— isBisim (Id A ag ai;) (Id B bg by)
(ap b — refl R ar by rg r1) 1]

E T ]



Squares
Given A : Type we have Id A : A — A — Type, thus

refl (Id A) : {ago ao1 : A} (ap2 : Id A agy ag1)
{am ai A} (ajp : Id A ajp air)
— Id Type (Id A agg aig) (Id A agy aip)

So if we have 'agg ags agy aig a1 aiz and also
agg : Id A agg ajp and ap; : Id A ag; aj; , we get

refl (Id A) agp aijp ap api : Type
whose elements are squares in A :

ar2
ao —— a11

3201\ a2 TE’ZI

00—, 4ol

refl (Id A) agp ajp -trr and so on give left-right box-filling.



Heterogeneous squares

Similarly, for Ay : Id Type Ag Az, we have

refl ((x y — Ay x y) : Ap — A; — Type)
: {ago 201 : Ao} (age : Id Ap apo ao1)
{a10 a1 : A1} (ag2 : Id A; ajg air)
— Id Type (Ap agp aig) (A2 apr aii)

giving types of heterogeneous squares

a0 —2 ay (in Ar)

az0:A2 ago aloT a2 TazliAz ao1 a11

aoo Toz> ao1 (in Ao)

with left-right filling. But for “A, .id" we want top-bottom filling.



Symmetry

Fifth (and last) principle of HOTT

Every square has an associated symmetric/transposed square:

ain ani
a0 —— a11 aolr —~ a11
820T a Tan a 302T sym(axp) Tan
00 —3,, * 901 d00 —,, * 910

We define these separately for each construction of squares. They
are functorial and coherent, and generalize to heterogeneous squares.

For Ay : Id Type Ag Aj, the last bisimulation method “A; .id"
is represented by sym (refl Ap) .
(We also have to deal with squares that are heterogeneous in both directions.

This is why our definition of isBisim is a “lie, and it leads to a surprisingly
deep and beautiful rabbit hole of “higher coinductive types”, which | omit today.)



Id-elimination

Just as in cubical type theory, from top-bottom box-filling and
transport we derive Martin-Lof Id-elimination, with typal S-rule:

def J (A:Type) (a:A) (P:(y:A) — Id A ay — Type)
(pa : P a (refl a)) (b:A) (p:Id A a b)
:Pbp
= let sq = refl ((y = Id A ay):A — Type) p in
refl P (sq .trr (refl a))
(sym (sq .liftr (refl a))) .trr pa

def JG6 (A : Type) (a:A) (P:(y:A) — Id A ay — Type)
(pa : P a (refl a))
:Id (P a (refl a)) pa (J A a P pa a (refl a))
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