
An observational proof assistant for
higher-dimensional mathematics

Michael Shulman
University of San Diego

j.w.w. Thorsten Altenkirch, Ambrus Kaposi,
Elif Uskuplu, and Chaitanya Leena Subramaniam

North American Annual Meeting
of the Association for Symbolic Logic

May 15, 2025

Narya

Narya is an experimental interval-free proof assistant
for higher-dimensional mathematics.

https://github.com/gwaithimirdain/narya

• Higher observational type theory

• Internally parametric type theory

• Displayed type theory

https://github.com/gwaithimirdain/narya

Outline

1 Dependent type theory

2 Higher observational type theory

3 Some technical details

Core language

The core language of Narya is a dependent type theory like those of
Rocq, Agda, and Lean.

• Dependent function types (x:A) → B x with application

f a and abstraction x 7→ f x (note syntax).

• A universe Type with Type : Type . No universe checking!

• No unification or implicit arguments yet.
• However, verbosity is decreased by bidirectional typechecking:

• Un-annotated x 7→ x checks at any type A → A .
• Un-annotated f a synthesizes B a if f synthesizes

(x:A) → B x and a checks at A .
• To write a redex, you must ascribe the function:

((x 7→ x) : A → A) a

• NbE-based typechecker with η-conversion: f ≡ x 7→ f x

Records

def Σ (A : Type) (B : A → Type) : Type := sig (

fst : A,

snd : B fst)

• An unlabeled tuple like (a, b) checks at any record with the
right number of fields (of the right type).

• A labeled tuple like (fst := a, snd := b) checks at any
record with fields having those names (and types).

• Fields are projected out with indices or labels, and spaces:

p .0 p .fst

• A projection synthesizes, if the head p synthesizes a record.

• Records satisfy η-conversion: p ≡ (p .fst, p .snd) .

Parsing field projections

Field projections are left-associative like function applications:

f (g a).fld b means ((f (g a)) .fld) b

This is the correct choice when application is juxtaposition.
It allows chained method calls without parentheses:

object .methodOne x y z

.methodTwo a b

.methodThree c d e

.methodFour

Datatypes

def List (A : Type) : Type := data [

| nil.

| cons. (x : A) (xs : List A)]

• A constructor like cons. b bs checks at any datatype with
that constructor name, if its arguments check correctly.

• Constructors end with . , dually to how fields begin with .

• Numerals 0 , 1 ,. . . parse to zero. , suc. zero. , . . .

• Matches with recursion, using an ML-like syntax:
def len (A : Type) (xs : List A) : N := match xs [

| nil. 7→ 0

| cons. xs 7→ 1 + len xs]

but with an ending delimiter] .

• No termination or positivity checking!

Matches, variables, and contexts

You can match on any (synthesizing) term, not just a variable:

def last (A : Type) (xs : List A) : Maybe A

:= match reverse xs [

| nil. 7→ none.

| cons. x 7→ some. x]

If you do match on a variable, the goal and the context refine:

def suc pred (n : N) (H : n ̸= 0) : suc. (pred n) = n

:= match n [

| zero. 7→ match H refl []

| suc. k 7→ refl (suc. k)]

• In the zero. branch, the type of H is 0 ̸= 0 .

• In the suc. branch, the goal reduces to suc. k = suc. k .

When matching on a non-variable, you can refine the goal explicitly
with match M return x 7→ P x (and “convoy” the context).

Fancy datatypes

Datatypes can be indexed:

def Vec (A : Type) : N → Type := data [

| nil. : Vec A 0

| cons. (n : N) (x : A) (xs : Vec A n) : Vec A (n+1)]

Indexed matches refine the goal and context if all indices are distinct
variables (more restrictive than Agda --without-K: no unification yet).

Families of definitions can be mutually inductive and/or recursive,
including induction-induction and induction-recursion:

def ctx : Type := data [

| empty.

| ext. (Γ : ctx) (A : ty Γ)]

and ty (Γ : ctx) : Type := data [

| base.

| pi. (A : ty Γ) (B : ty (ext. Γ A))]

Fancy matches

Matches can be deep:

def half (n : N) : N := match n [

| zero. 7→ zero.

| suc. zero. 7→ zero.

| suc. (suc. n) 7→ suc. (half n)]

Matches can be multiple:

def conj (x y : Bool) : Bool := match x, y [

| true., true. 7→ true.

| true., false. 7→ false.

| false., 7→ false.]

• Both expanded at parse time into sequential matches.

• The programmer controls and can easily see the case tree.

• Exact splits are required.

Codatatypes

Codatatypes are defined using a “self” variable:

def Stream (A : Type) : Type := codata [

| s .head : A

| s .tail : Stream A]

def M (A : Type) (B : A → Type) : Type := codata [

| s .recv : A

| s .send : B (s .recv) → M A B]

• Methods of a codatatype are called like fields of a record:

s .head s .tail b

• Codatatypes are inhabited by copatterns and corecursion:

def zeros : Stream N := [

| .head 7→ 0

| .tail 7→ zeros]

• No productivity or positivity checking yet!

Canonical types in case trees

A novel feature: canonical types can be defined inside a match.

def Covec (A : Type) (n : N) : Type := match n [

| zero. 7→ sig ()

| suc. n 7→ sig (

car : A,

cdr : Covec A n)]

Then

• Covec A 0 is a unit type

• Covec A 1 is a record type isomorphic to A

• Covec A 2 is a record type isomorphic to A × A

• etc.

but they are all canonical and don’t reduce to anything.

Mixfix notations

User-defined mixfix notations with precedence and associativity.

notation 1 plus : x "+" y . . . := plus x y

notation 2 times : x "*" y . . . := times x y

notation 0 ite : "if" b "then" x "else" y := ite b x y

notation 1.5 types : Γ "⊢" a "::" A := types Γ a A

notation 3 interp : "J" M "K" := interp M

• Unicode operators are allowed, delimited by spaces.

• ASCII operators don’t require spaces: x+y , x-y , x:A .

• Special built-ins like → , 7→ , := don’t require spaces, and

have ASCII equivalents -> , |-> , := .

Namespaces and imports

Uses Yuujinchou by Favonia/RedPRL for namespacing.

• These both define foo.bar , which is in namespace foo :

def foo.bar := . . .

section foo :=
def bar := . . .

end

• Patch foo by defining new constants starting with foo.

• Import other source files, with a powerful suite of modifiers:

import "file" | in foo renaming bar baz

• Notations are stored in the notations namespace:
import "file1" | except notations

import "file2" | union (renaming . file2, only notations)

After typechecking a file, a compiled version is written to disk for
faster future loading.

Interactive coding and proof

• ProofGeneral Emacs mode allows progressive processing and
undoing while working on a source file, like Rocq.

• Can also leave holes ? , view their inferred types and contexts,
and fill them later, like Agda.

• Can split in a hole, automatically inserting abstractions, tuples,
or comatches based on its type.

• No tactics yet.

• An opinionated automatic formatter reformats files on load
and commands when processed interactively (by default),
also changing ASCII -> into Unicode → etc.

Outline

1 Dependent type theory

2 Higher observational type theory

3 Some technical details

Identity types

First principle of HOTT

For x : A and y : A , we have an identity type Id A x y .

Second principle of HOTT

For x : A , we have a reflexivity term refl x : Id A x x ,
which synthesizes if x does.

We regard the definition of Id A (and hence also Id (Id A) ,

Id (Id (Id A)) etc.) as part of the definition of A .

Similarly, the definition of refl x is part of the definition of x .

For example. . .

Observational identity types

The type Id (A × B) p q behaves as if it were defined by

def Id A×B p q : Type := sig (

fst : Id A (p .fst) (q .fst)

snd : Id B (p .snd) (q .snd))

This makes it behave almost exactly like
Id A (p .fst) (q .fst) × Id B (p .snd) (q .snd) :

1 Given r : Id (A × B) p q , we have

r .fst : Id A (p .fst) (q .fst)

r .snd : Id B (p .snd) (q .snd)

2 Given s : Id A (p .fst) (q .fst)

and t : Id B (p .snd) (q .snd) , we have

(s, t) : Id (A × B) p q

Observational reflexivity

Similarly, reflexivity is defined on each term-former:

refl (a, b) ≡ (refl a, refl b)

refl (p .fst) ≡ (refl p) .fst

refl (p .snd) ≡ (refl p) .snd

These compute from left to right. However, since records have
η-conversion, it follows that for any p : A × B we have

refl p ≡ (refl (p .fst), refl (p .snd))

More observational identity types

• Id (List A) xs ys behaves as if it were defined by

def Id ListA : List A → List A → Type := data [

| nil. : Id ListA nil. nil.

| cons. : {x0 x1 : A} (x2 : Id A x0 x1)

{xs0 xs1 : List A} (xs2 : Id ListA xs0 xs1)

→ Id ListA (cons. x0 xs0) (cons. x1 xs1)]

These constructors check at it, and can be matched against.
This makes encode-decode proofs marginally simpler.

• Id (Stream A) s t behaves as if it were defined by

def Id StreamA (s t : Stream A) : Type := codata [

| u .head : Id A (s .recv) (t .recv)

| u .tail : Id StreamA (s .tail) (t .tail)]

These destructors apply to it, and can be comatched against.
Equality in codatatypes is bisimulation, by definition.

Observational function types

Id (A → B) f g behaves as if it were defined to equal

{x0 x1 : A} (x2 : Id A x0 x1) → Id B (f x0) (g x1) .

This is a little more complicated than the näıvely expected

(x : A) → Id B (f x) (g x) .

• Once we have transport, we can prove them equivalent.

• The former is required for parametricity (when no transport).

• For f : A → B , we get that refl f is “ap”, with type

{x0 x1 : A} (x2 : Id A x0 x1) → Id B (f x0) (f x1) .

Third principle of HOTT

All constructions preserve equality, in separately defined ways.

Computation with ap

Supposing a2 : Id A a0 a1 , we have:

refl ((x 7→ (f x, g x)) : A → B × C) a2

≡ (refl f a2, refl g a2)

Supposing p2 : Id (A × B) p0 p1 , we have:

refl ((x 7→ x .fst) : A × B → A) p2 ≡ p2 .fst

refl ((x 7→ x .snd) : A × B → B) p2 ≡ p2 .snd

Implemented internally using “higher-dimensional substitutions”.

On “definitions” of the universe

Traditional perspective (“meaning explanations” and “lower” OTT)

The universe is inductively defined by type-formers as constructors.

• The Tarski eliminator El is (inductive-)recursively defined.

• Id is also recursively defined with clauses for each constructor,

e.g. Id (A × B) ≡ Id A × Id B .

• Justifies type-case, not univalence.

HOTT perspective

The universe is coinductively defined by El and Id as destructors.

• Id is coinductive: Id of a type is another family of types.

• Each type-former is defined corecursively, by specifying
El (i.e. its intro/elim/. . . rules) and Id (which are generally
other instances of the same type-former).

• Justifies univalence, as we will see. . .

Bisimulations of types

• Equality in a coinductively defined type is “bisimulation”.
• Intuitively, two systems are bisimilar if there is a
correspondence between their “states” such that

1 Any state in one system corresponds to some state in the other.
2 The “subsequent behavior” (coinductive destructors) of

corresponding pairs of states are also bisimilar, coinductively.

Fourth principle of HOTT

Id Type A B behaves like it consists of bisimulations:

def isBisim (A B:Type) (R:A→B→Type) : Type := codata [

| x .trr : A → B

| x .liftr : (a:A) → R a (x .trr a)

| x .trl : B → A

| x .liftl : (b:B) → R (x .trl b) b

| x .id :∗ (a0 a1:A) (b0 b1:B) (r0:R a0 b0) (r1:R a1 b1)

→ isBisim (Id A a0 a1) (Id B b0 b1) ...]

where ... is some correspondence induced by R (TBD).

Behavior of Id Type

Introduction

For R : A → B → Type and Rb : isBisim A B R , we have

glue A B R Rb : Id Type A B .

Elimination

Any A2 : Id Type A0 A1 gives rise to:

• Given a0 : A0 and a1 : A1 , have A2 a0 a1 : Type .

• Given a0 : A0 , have A2 .trr a0 : A1 .

• Given a0 : A0 , have A2 .liftr a0 : A2 a0 (A2 .trr a0) .

• Given a1 : A1 , have A2 .trl a1 : A0 .

• Given a1 : A1 , have A2 .liftl a1 : A2 (A2 .trl a1) a1 .

• Something TBD for “A2 .id”. . .

Behavior of Id Type

Introduction

For R : A → B → Type and Rb : isBisim A B R , we have

glue A B R Rb : Id Type A B .

Elimination

Any A2 : Id Type A0 A1 gives rise to:

• Given a0 : A0 and a1 : A1 , have A2 a0 a1 : Type .

• trr , liftr , trl , liftl

Computation

For a : A and b : B , the type glue A B R Rb a b behaves like

def glueABR a b : Type := sig (unglue : R a b)

and glue A B R Rb .trr etc. compute to the fields of Rb .

Behavior of Id Type

Introduction

For R : A → B → Type and Rb : isBisim A B R , we have

glue A B R Rb : Id Type A B .

Elimination

Any A2 : Id Type A0 A1 gives rise to:

• Given a0 : A0 and a1 : A1 , have A2 a0 a1 : Type .

• trr , liftr , trl , liftl

Consistency

For A : Type with a : A and b : A , we have

Id A a b ≡ refl A a b .

Heterogeneous equality

For B : A → Type , if a2 : Id A a0 a1 we have

refl B a2 : Id Type (B a0) (B a1) .

Thus, for b0 : B a0 and b1 : B a1 , we have a type

refl B a2 b0 b1 : Type

of dependent or heterogeneous equalities.

These figure in Id of dependent records and functions:

• For B:A→Type , Id (Σ A B) p q behaves like

def Id ΣAB p q : Type := sig (

fst : Id A (p .fst) (q .fst),

snd : refl B fst (p .snd) (q .snd))

• For B:A→Type , Id ((x:A)→B x) f g behaves like

{x0 x1 : A} (x2 : Id A x0 x1) → refl B x2 (f x0) (g x1)

Co-univalence

Theorem

If A2 : Id Type A0 A1 , then A2 .trr : A0 → A1 and

A2 .trl : A1 → A0 are inverse equivalences.

Proof.

Given a0 : A0 , have A2 .liftr a0 : A2 a0 (A2 .trr a0) and

A2 .liftl (A2 .trr a0)

: A2 (A2 .trl (A2 .trr a0)) (A2 .trr a0)

Therefore, we have an induced bisimulation between

Id A0 a0 (A2 .trl (A2 .trr a0)) and

Id A1 (A2 .trr a0) (A2 .trr a0) .

Thus, since refl (A2 .trr a0) inhabits the latter, the former is
also inhabited. The other direction is dual.

Univalence

Theorem

If f : A → B is an equivalence, then

(a b 7→ Id B (f a) b) : A → B → Type

is a bisimulation. Hence we get ua f : Id Type A B .

Main idea of proof.

If f : A → B is an equivalence, so is each

refl f {a0} {a1} : Id A a0 a1 → Id B (f a0) (f a1)

Therefore, we can use corecursion.

The more things change. . .

On the n-Category Café blog comments, December 2009:

Peter Lumsdaine: . . . asking a [space] to be contractible involves arbitrary
high dimensions, and I’m not sure what kind of language . . . would let you
talk about that. . . a type may have infinitely high non-trivial structure. . .
[but] you can only work with. . . finite-dimensional approximations.

Me: One way. . . to talk about contractibility is by coinduction. If A is
contractible. . . (1) A is inhabited, and (2) for any x , y ∈ A, homA(x , y) is
contractible. Moreover, contractibility is maximal with this property. . .

Peter Lumsdaine: . . . you might well also want to talk about [equivalences]

defined coinductively, as. . . in e.g. [Eugenia] Cheng “An ω-category with all

duals is an ω-groupoid”.

Then Voevodsky came along and we went on a 15-year detour. . .

Status of the implementation

• Run narya -hott to get the HOTT implementation.

• Everything I’ve described so far is implemented except that the
fields trr , etc. don’t compute.

• Warning: highly in flux, syntax is likely to change.

• Omitting -hott gives an internally parametric type theory,
with Id but no trr .

• Here we can define a notion of “fibrancy” that models HOTT.
• Everything is proven to compute except trr on the universe.

• Can vary the -arity and -internal-ness of parametricity.
• “External” unary case is a version of displayed type theory, in

which we can define semi-simplicial types (jww Kolomatskaia).

• Eventually -hott will always be on, and other “directions” of
parametricity can coexist with it.

Remarks on the implementation

• 27,000 lines of OCaml

• Normalization by evaluation
• Dependently typed programming

• Intrinsically well-scoped De Bruijn indices
• Type-level dimensions

• Algebraic effects
• Thanks to Favonia/RedPRL

• Yuujinchou: imports, scoping
• Asai: error reporting
• Algaeff: algebraic effects
• Bwd: backwards lists

Outline

1 Dependent type theory

2 Higher observational type theory

3 Some technical details

What’s missing

1 The complete type of id in isBisim .

2 Something to represent id acting on A2 : Id Type A0 A1 .

3 A ∗lie.

Completing∗ the definition of bisimulation

Any R:A→B→Type induces

refl R : {a0 a1:A} (a2:Id A a0 a1) {b0 b1:B} (b2:Id B b0 b1)

→ Id Type (R a0 b0) (R a1 b1)

So if we have a0 a1 : A and b0 b1 : B , and also r0:R a0 b0

and r1:R a1 b1 , then

(a2 b2 7→ refl R a2 b2 r0 r1) : Id A a0 a1 → Id B b0 b1 → Type

and this is what appears in the method id of isBisim :

def isBisim (A B:Type) (R:A→B→Type) : Type := codata [

| x .trr : A → B

| x .liftr : (a:A) → R a (x .trr a)

| x .trl : B → A

| x .liftl : (b:B) → R (x .trl b) b

| x .id :∗ (a0 a1:A) (b0 b1:B) (r0:R a0 b0) (r1:R a1 b1)

→ isBisim (Id A a0 a1) (Id B b0 b1)

(a2 b2 7→ refl R a2 b2 r0 r1)]

Squares

Given A : Type we have Id A : A → A → Type , thus

refl (Id A) : {a00 a01 : A} (a02 : Id A a00 a01)

{a10 a11 : A} (a12 : Id A a10 a11)

→ Id Type (Id A a00 a10) (Id A a01 a11)

So if we have a00 a01 a02 a10 a11 a12 and also

a20 : Id A a00 a10 and a21 : Id A a01 a11 , we get

refl (Id A) a02 a12 a20 a21 : Type

whose elements are squares in A :

a10 a11

a00 a01

a12

a22a20

a02

a21

refl (Id A) a02 a12 .trr and so on give left-right box-filling.

Heterogeneous squares

Similarly, for A2 : Id Type A0 A1 , we have

refl ((x y 7→ A2 x y) : A0 → A1 → Type)

: {a00 a01 : A0} (a02 : Id A0 a00 a01)

{a10 a11 : A1} (a12 : Id A1 a10 a11)

→ Id Type (A2 a00 a10) (A2 a01 a11)

giving types of heterogeneous squares

a10 a11 (in A1)

a00 a01 (in A0)

a12

a22a20:A2 a00 a10

a02

a21:A2 a01 a11

with left-right filling. But for “A2 .id” we want top-bottom filling.

Symmetry

Fifth (and last) principle of HOTT

Every square has an associated symmetric/transposed square:

a10 a11

a00 a01

a12

a22a20

a02

a21 ⇝

a01 a11

a00 a10

a21

sym(a22)a02

a20

a12

We define these separately for each construction of squares. They
are functorial and coherent, and generalize to heterogeneous squares.

For A2 : Id Type A0 A1 , the last bisimulation method “A2 .id”

is represented by sym (refl A2) .

(We also have to deal with squares that are heterogeneous in both directions.
This is why our definition of isBisim is a ∗lie, and it leads to a surprisingly
deep and beautiful rabbit hole of “higher coinductive types”, which I omit today.)

Id-elimination

Just as in cubical type theory, from top-bottom box-filling and
transport we derive Martin-Löf Id-elimination, with typal β-rule:

def J (A : Type) (a : A) (P : (y : A) → Id A a y → Type)

(pa : P a (refl a)) (b : A) (p : Id A a b)

: P b p

:= let sq := refl ((y 7→ Id A a y) : A → Type) p in

refl P (sq .trr (refl a))

(sym (sq .liftr (refl a))) .trr pa

def Jβ (A : Type) (a : A) (P : (y : A) → Id A a y → Type)

(pa : P a (refl a))

: Id (P a (refl a)) pa (J A a P pa a (refl a))

:= ...

	Dependent type theory
	Higher observational type theory
	Some technical details

